Quadrature formulae and moment problems

  • W. J. Thron
Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1105)


Quadrature formulae can play a role in the solution of the moment problem. Formulae with degree of precision 2n − 1 − k, k = 0,1, have previously been used. Here we study when, for k ≥ 2, the node polynomials have only real, simple zeros and when the weights are non-negative.


Quadrature Formula Moment Problem Simple Zero Real Zero Monic Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezinski, C. Padé-type approximation and general orthogonal polynomials, ISNM 50, Birkhäuser Verlag (1980).Google Scholar
  2. 2.
    Draux, A. Polynômes Orthogonaux Formels — Applications, Lecture Notes in Mathematics No. 974, Springer-Verlag, Berlin (1983).CrossRefzbMATHGoogle Scholar
  3. 3.
    Fejér, L. Mechanische Quadraturen mit positiven Cotesschen Zahlen, Math. Zeitschr. 37 (1933), 287–309.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gautschi, W. A survey of Gauss-Christoffel quadrature formulae, E. B. Christoffel (P.L. Butzer and F. Fehér, Eds.), Birkhäuser Verlag (1981), 72–147.Google Scholar
  5. 5.
    Gragg, W. B. Matrix interpretations and applications of the continued fraction algorithm, Rocky Mtn. J. Math. 4 (1974), 213–225.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Micchelli, C. A. and Rivlin, T. J. Numerical integration rules near Gaussian quadrature, Israel J. Math. 16 (1973), 287–299.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Njåstad, O. and Thron, W. J. The theory of sequences of orthogonal L-polynomials, Kgl. Norske Vidensk. Selsk. Skrifter (1983), No. 1, 54–91.Google Scholar
  8. 8.
    Peherstorfer F. Characterization of positive quadrature formulas, SIAM J. Math. Anal. 12 (1981), 935–942.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pólya, G. Über die Konvergenz von Quadraturverfahren, Math. Zeitschr. 37 (1933), 264–286.CrossRefzbMATHGoogle Scholar
  10. 10.
    Shohat, J. On mechanical quadratures, in particular, with positive coefficients, Trans. AMS 42 (1937), 461–496.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sottas, G. and Wanner, G. The number of positive weights of a quadrature formula, BIT 22 (1982), 339–352.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wall, H. S. Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. J. Thron
    • 1
  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations