Advertisement

Extended numerical computations on the “1/9” conjecture in rational approximation theory

  • A. J. Carpenter
  • A. Ruttan
  • R. S. Varga
Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1105)

Abstract

The behavior of the constants λn,n(ex), denoting the errors of best uniform approximation to ez on the interval [0,+∞) by real rational functions having numerator and denominator polynomials of degree at most n, has generated much recent interest in the approximation theory literature. Based on high-precision calculations, we present here the table of constants {λn,n (ex)} n 30 =0, rounded to forty significant digits, and we discuss their significance to related conjectures in this area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-P. Blatt and D. Braess, “Zur rationalen Approximation von e x auf [0, ∞)”, J. Approxiation Theory 30(1980), 169–172.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Richard Brent, “A FORTRAN multiple-precision arithmetic package”, Assoc. Comput. Mach. Trans. Math. Software 4(1978), 57–70.CrossRefGoogle Scholar
  3. 3.
    C. Brezinski, Algorithmes d'Accélération de la Convergence, Éditions Technip, Paris, 1978.zbMATHGoogle Scholar
  4. 4.
    W. J. Cody, G. Meinardus, and R. S. Varga, “Chebyshev rational approximation to e x in [0, +∞) and applications to heat-conduction problems”, J. Approximation Theory 2(1969), 50–65.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, New York, 1967.CrossRefzbMATHGoogle Scholar
  6. 6.
    G. Németh, “Notes on generalized Padé approximation”, in Approximation and Function Spaces (Z. Ciesielski, ed.), pp. 484–508, North-Holland Publishing Co., Amsterdam, 1981.Google Scholar
  7. 7.
    D. J. Newman, “Rational approximation to e x”, J. Approximation Theory 10(1974), 301–303.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H.-U. Opitz and K. Scherer, “On the rational approximation of e x on [0, ∞)”, Constructive Approximation (to appear).Google Scholar
  9. 9.
    Q. I. Rahman and G. Schmeisser, “Rational approximation to e x”, J. Approximation Theory 23(1978), 146–154.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Q. I. Rahman and G. Schmeisser, “Rational approximation to e x. II”, Trans. Amer. Math. Soc. 235(1978), 395–402.MathSciNetzbMATHGoogle Scholar
  11. 11.
    E. B. Saff and R. S. Varga, “Some open questions concerning polynomials and rational functions”, in Padé and Rational Approximation (E. B. Saff and R. S. Varga, eds.), pp. 483–488, Academic Press, Inc., New York, 1977.CrossRefGoogle Scholar
  12. 12.
    A. Schönhage, “Zur rationalen Approximerbarkeit von e x über [0, ∞), J. Approximation Theory 7(1973), 395–398.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Schönhage, “Rational approximation to e x and related L 2-problems”, SIAM J. Numer. Anal. 19(1982), 1067–1082.MathSciNetCrossRefGoogle Scholar
  14. 14.
    L. N. Trefethen and M. H. Gutknecht, “The Carathéodory-Fejér method for real rational approximation”, SIAM J. Numer. Anal. 20(1983), 420–436.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. J. Carpenter
    • 1
  • A. Ruttan
    • 1
  • R. S. Varga
    • 1
  1. 1.Institute for Computational MathematiesKent State UniversityKentUSA

Personalised recommendations