Advertisement

Approximations to ex arising in the numerical analysis of volterra equations

  • Christopher T. H. Baker
Numerical Methods
  • 479 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1105)

Abstract

The study of numerical methods for Volterra integral equations yields some novel approximations to the exponential function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, C.T.H., An introduction to the numerical treatment of Volterra and Abel-type integral equations. Lect. Notes Math 965 (1982) 1–38.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baker, C.T.H., Numerical Analysis Tech Rep. 87, University of Manchester (1983).Google Scholar
  3. 3.
    Baker, C.T.H. and Wilkinson, J.C., Stability analysis of Runge-Kutta methods applied to a basic Volterra integral equation. J. Austral. Math. Soc. Ser. B 22 (1981) 515–538.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brunner, H., A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 8 (1982) 213–229.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brunner, H., Hairer, E., and Nørsett, S.P., Runge-Kutta theory for Volterra integral equations of the second kind. Math. Comput. 39 (1982) 147–163.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Donelson, J.P., and Hansen, E., Cyclic composite multistep predictor-corrector methods. SIAM J. Numer. Anal. 8 (1971) 137–157.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962.zbMATHGoogle Scholar
  8. 8.
    Lambert, J.D., Computational Methods in Ordinary Differential Equations, Wiley, London, 1973.zbMATHGoogle Scholar
  9. 9.
    Noble, B., Instability when solving Volterra integral equations of the second kind by multistep methods. Lect. Notes Math. 109 (1969) 23–29.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pouzet, P. Étude en vue de leur traitement numériques des équations intégrales de type Volterra. Rev. Francaise Traitement de l'Information (Chiffres) 6 (1963) 79–112.MathSciNetGoogle Scholar
  11. 11.
    Stetter, H.J., Analysis of Discretization Methods for Ordinary Differential Equations, Springer, Berlin, 1973.CrossRefzbMATHGoogle Scholar
  12. 12.
    Wolkenfelt, P.H.M., The numerical analysis of reducible quadrature methods for Volterra integral and integro-differential equations. Academisch Proefschrift (Thesis), University of Amsterdam (1981).Google Scholar
  13. 13.
    Wolkenfelt, P.H.M., The construction of reducible quadrature rules for Volterra integral and integro-differential equations. IMA J.Numer.Anal. 2 (1982), 131–152.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Christopher T. H. Baker
    • 1
  1. 1.Department of MathematicsThe UniversityManchesterUK

Personalised recommendations