Advertisement

Multivariate interpolation

  • G. G. Lorentz
  • R. A. Lorentz
Approximation And Interpolation Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1105)

Abstract

We consider interpolation of multivariate functions by algebraic polynomials in ℝS, s ≥ 2. Since our methods and results do not depend on dimension s ≥ 2, we restrict ourselves to bivariate interpolation, s=2. Using methods of Birkhoff interpolation from.

Keywords

Interpolation Problem Lagrange Interpolation Algebraic Polynomial Interpolation Matrix Multivariate Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolations, SIAM J. Numer. Anal. 14 (1977), 735–743.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Ciarlet, P.G., The finite element method for elliptic problems, North Holland, New York, 1978.zbMATHGoogle Scholar
  3. [3]
    H. A. Hakopian, Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type, J. Approximation Theory 34 (1982), 286–305.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. Hakopian, Multivariate spline functions, B-spline basis and polynomial interpolations, SIAM J. Numer. Anal. 19 (1982), 510–517.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Karlin and J. M. Karon, Poised and non-poised Hermite-Birkhoff interpolation, Indiana Univ. Math. J. 21 (1972), 1131–1170.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Kergin, A natural interpolation of CK functions, J. Approximation Theory 29 (1980), 278–293.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. G. Lorentz, K. Jetter and S. D. Riemenschneider, Birkhoff Interpolation, Encyclopedia of Mathematics and its Applications, vol. 19, Addison-Wesley, Reading, 1983.Google Scholar
  8. [8]
    G. G. Lorentz and K. L. Zeller, Birkhoff interpolation problem: coalescence of row, Arch. Math. 26 (1975), 189–192.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    C. A. Micchelli, A constructive approach to Kergin interpolation in RK: Multivariate B-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), 485–497.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • G. G. Lorentz
    • 1
  • R. A. Lorentz
    • 2
  1. 1.Department of MathematicsThe University of TexasAustin
  2. 2.GMD Schloss BirlinghovenSt. Augustin 1Germany

Personalised recommendations