Advertisement

Continued fraction solution of the general Riccati equation

  • J. S. R. Chisholm
Approximation And Interpolation Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1105)

Abstract

The general Riccati equation is reduced to the standard form z′(x)=b0(x) − z2(x). Successive iterations of a continued fraction solution of this equation are given in terms of a sequence {br(x); r=1,2,…} of functions which replace b0(x) in the standard form, and which are defined in terms of b0(x) and its derivatives.

Keywords

Riccati Equation Perturbation Series Riccati Differential Equation Pade Approximants Pade Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. C. McVittie, "The Mass-particle in an Expanding Universe", Mon.Not.Roy.Ast.Soc. 93, 325 (1933).CrossRefzbMATHGoogle Scholar
  2. 2.
    G. C. McVittie, "Elliptic Functions in Spherically Symmetric Solutions of Einstein's Equations", Ann.Inst.Henri Poincaré 40, 3, 231 (1984).MathSciNetzbMATHGoogle Scholar
  3. 3.
    C. Liverani and G. Turchetti, "Existence and Asymptotic Behaviour of Padé Approximants to Korteweg-de-Vries Multisoliton Solutions", J.Math.Phys. 24, 1, 53 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    F. Lambert and Musette, "Solitons from a Direct Point of View II", preprint VUB/TF/83/06, Vrije Universiteit Brussel (1983).Google Scholar
  5. 5.
    P. B. Burt, "Quantum Mechanics and Non-linear Waves" (Harwood Academic, 1982).Google Scholar
  6. 6.
    P. B. Burt, ibid., pp. 111–113.Google Scholar
  7. 7.
    E. Laguerre, "Sur la réduction en fractions continues d'une fraction qui satisfait à un equation differentielle linéare du premier ordre dont les coefficients sont rationels", J. de Math, Pures et Appliqués 1, 135–165 (1885).zbMATHGoogle Scholar
  8. 8.
    E. P. Merkes and W. T. Scott, "Continued Fraction Solutions of the Riccati Equation", J.Math.Analysis and Applic. 4, 309 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wyman Fair, "Padé Approximation to the solution of the Riccati Equation", Math. Comp. 18, 627 (1964).MathSciNetzbMATHGoogle Scholar
  10. 10.
    G. A. Baker, Jr. and P. R. Graves-Morris, "Padé Approximants", part II, pp. 162–165 (Addison-Wesley, 1981).Google Scholar
  11. 11.
    A. N. Stokes, "Continued Fraction Solutions of the Riccati Equation", Bull. Austral. Math. Soc. 25, 207 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H. G. Ellis, "Continued Fraction Solutions of the General Riccati Differential Equation", Rocky Mountain J. Math. 4, 2, 353 (1974).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. S. R. Chisholm
    • 1
  1. 1.Mathematical InstituteUniversity of KentCanterburyEngland

Personalised recommendations