Advertisement

On rational approximation of the exponential and the square root function

  • Dietrich Braess
Approximation And Interpolation Theory
  • 546 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1105)

Abstract

Fifteen years ago Meinardus made a conjecture on the degree of the rational approximation of the function ex on the interval [−1,+1]. The conjecture was recently proved via the approximation on the circle |z|=½ in the complex plane. The same method is now applied to the approximation of the square root function. Here we have a gap between the upper and the lower bound, the amount of which depends on the location of the branch point. To close the gap some folklore about Heron's method is collected and completed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Borwein, On a method of Newman and a theorem of Bernstein. J. Approximation Theory 34, 37–41 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. Braess, On the conjecture of Meinardus on rational approximation of ex. J. Approximation Theory 36, 317–320 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. Meinardus, Approximation of Functions: Theory and Numerical Methods. Springer, New-York-Heidelberg 1967.CrossRefzbMATHGoogle Scholar
  4. 4.
    D.J. Newman, Approximation with Rational Functions. Regional Conference Series, No.41. Amer.Math.Soc.Providence,Rhode Island 1979.Google Scholar
  5. 5.
    I. Ninomiya, Best Rational Starting Approximations and Improved Newton Iteration for the Square Root. Math.Comp. 24, 391–407 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    O. Perron, Die Lehre von den Kettenbrüchen II. Teubner, Suttgart 1957.zbMATHGoogle Scholar
  7. 7.
    H. Rutishauser, Betrachtungen zur Quadratwurzeliteration. Monatshefte Math. 67, 452–464 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E. Saff, On the degree of best rational approximation to the exponential function. J. Approximation Theory 9,97–101 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    L.N. Trefethen, Near circularity of the error curve in complex Chebyshev approximation. J. Approximation Theory 31, 344–367 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    L.N. Trefethen, The asymptotic accuracy of rational best approximation to ez on a disk. J. Approximation Theory 40, 380–383 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    K. Zeller, Newton-Čebyšev-Approximation. In "Iterationsverfahren, Numerische Mathematik, Approximationstheorie" (L. Collatz et al, Eds.) pp. 101–104, Birkhäuser, Basel 1970.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Dietrich Braess
    • 1
  1. 1.Institut für MathematikRuhr-UniversitätBochumGermany

Personalised recommendations