Skip to main content

Some properties and applications of Chebyshev polynomial and rational approximation

  • Survey Articles
  • Conference paper
  • First Online:
Rational Approximation and Interpolation

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1105))

Abstract

A number of key properties and applications of real and complex Chebyshev polynomials of the first and second kinds are here reviewed. First, in the overall context of Lp norms (1≤p≤∞), there is a review of the orthogonality and minimality properties of Chebyshev polynomials, the best and near-best approximation properties of Chebyshev series expansions and Chebyshev interpolating polynomials, and the links between Chebyshev series and Fourier and Laurent series. Second, there is a brief discussion of the applications of Chebyshev polynomials to Chebyshev-Padé-Laurent approximation, Chebyshev rational interpolation, Clenshaw-Curtis integration, and Chebyshev methods for integral and differential equations. Several new or unpublished ideas are introduced in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J C Mason, Minimal projections and near-best approximations by multivariate polynomial expansion and interpolation. In: "Multivariate Approximation II" (W Schempp and K Zeller, Eds) Birkhäuser Verlag, Basel, 1982 (pp 241–254).

    Chapter  Google Scholar 

  2. J C Mason, Near-best Lp approximations by real and complex Chebyshev series. IMA J. Numer. Anal. 3 (1983), 493–504.

    Article  MathSciNet  MATH  Google Scholar 

  3. E W Cheney, "Introduction to Approximation Theory," McGraw Hill, New York, 1966.

    MATH  Google Scholar 

  4. F V Atkinson and J C Mason, Minimal Lp properties of Chebyshev polynomials and series. (1984) (in preparation).

    Google Scholar 

  5. A Ossicini and F Rosati, Bolletino Unione Math. Ital, (4) 11 (1975), 224–237.

    MathSciNet  Google Scholar 

  6. J R Rice, "The Approximation of Functions (Vol I)", Addison Wesley, 1964.

    Google Scholar 

  7. J H Freilich and J C Mason, Best and near-best L1 approximations by Fourier series and Chebyshev series. J of Approx. Th. 4 (1971) 183–193.

    Article  MathSciNet  MATH  Google Scholar 

  8. B L Chalmers and J C Mason, Minimal Lp projections by Fourier, Taylor, and Laurent series. J. of Approx, Th. 40 (1984) (in press).

    Google Scholar 

  9. K O Geddes and J C Mason, Polynomial approximation by projections on the unit circle. SIAM J. Numer. Anal. 12 (1975), 111–120.

    Article  MathSciNet  MATH  Google Scholar 

  10. H Ehlich and K Zeller, Auswertung der Normen von Interpolations — operatoren. Math. Annalen 164 (1966), 105–112.

    Article  MathSciNet  MATH  Google Scholar 

  11. M J D Powell, On the maximum errors of polynomial approximations defined by interpolation and least squarescriteria. Computer J. 9 (1967), 404–407.

    Article  MATH  Google Scholar 

  12. K O Geddes, Near-minimax polynomial approximation in an elliptical region. SIAM J. Numer. Anal. 15 (1978), 1225–1233.

    Article  MathSciNet  MATH  Google Scholar 

  13. J C Mason, Near-minimax interpolation by a polynomial in z and z−1 on a circular annulus. IMA J. Numer. Anal. 1 (1981), 359–367.

    Article  MathSciNet  MATH  Google Scholar 

  14. W B Gragg and G D Johnson, The Laurent-Padé table. In "Information processing 74" (Proc. IFIP Congress 74), North Holland, Amsterdam, 1974, pp 632–637.

    Google Scholar 

  15. J S R Chisholm and A K Common, Generalisations of Padé approximation for Chebyshev and Fourier series. Proc. 1979 International Christoffel Symposium (1980), pp 212–231.

    Google Scholar 

  16. C W Clenshaw and A R Curtis, A method for numerical integration on an automatic computer. Numer. Mathematik 2 (1960), 197–205.

    Article  MathSciNet  MATH  Google Scholar 

  17. I Sloan and W E Smith, Properties of interpolating product integration rules. SIAM J. Numer. Anal. 19 (1982), 427–442.

    Article  MathSciNet  MATH  Google Scholar 

  18. J C Mason, Orthogonal polynomial approximation methods in numerical analysis. In: "Approximation Theory", A Talbot (ed), Academic Press, London, 1970.

    Google Scholar 

  19. S Filippi, Angenäherte Tschebyscheff — Approximation einer Stammfunktion — eine Modifikation des Verfahrens von Clenshaw und Curtis. Numer. Mathematik 6 (1964), 320–328.

    Article  MathSciNet  MATH  Google Scholar 

  20. D Elliott, A Chebyshev series method for the numerical solution of Fredholm integral equations. Computer J. 6 (1963), 102–111.

    Article  MathSciNet  MATH  Google Scholar 

  21. G M L Gladwell and A H England, Orthogonal polynomial solutions to some mixed boundary-value problems in elasticity theory. Q.J. Mech. Appl. Math. 30 (2), (1977), 175–185.

    Article  MathSciNet  MATH  Google Scholar 

  22. M R Razali and K S Thomas, Singular integral equations and mixed boundary value problems for harmonic functions. In: "Treatment of Integral Equations by Numerical Methods", C T H Baker and G F Miller (Eds), Academic Press, London, 1982, pp. 387–396.

    Google Scholar 

  23. C Lanczos, "Applied Analysis", Prentice Hall, 1956.

    Google Scholar 

  24. J H Freilich and E L Ortiz, Numerical solution of systems of ordinary differential equations with the Tau method: an error analysis. Maths of Comp. 39 (1982), 467–479.

    Article  MathSciNet  MATH  Google Scholar 

  25. M Urabe, Galerkin's procedure for non-linear periodic systems and its extension to multi-point boundary value problems for general non-linear systems. In: "Numerical Solution of Non-linear Differential Equations" D Greenspan (Ed), Wiley, 1966, pp 297–327.

    Google Scholar 

  26. C W Clenshaw, The numerical solution of linear differential equations in Chebyshev series. Proc. Camb. Phil. Soc. 53 (1957), 134–149.

    Article  MathSciNet  MATH  Google Scholar 

  27. K Wright, Chebyshev collocation methods for ordinary differential equations. Comp. J. 6 (1964), 358–363.

    Article  MathSciNet  MATH  Google Scholar 

  28. C W Clenshaw, The solution of van der Pol's equation in Chebyshev series. In: "Numerical Solution of Nonlinear Differential Equations". D Greenspan (Ed), Wiley, 1966, pp 55–63.

    Google Scholar 

  29. J C Mason, Some new approximations for the solution of differential equations. D. Phil. Thesis, Oxford, 1965.

    Google Scholar 

  30. J C Mason, Formulae for approximate solutions of the Thomas Fermi equation. Proc. Phys. Soc. 89 (1966), 772–774.

    Article  Google Scholar 

  31. D Knibb and R E Scraton, A note on the numerical solution of non-linear parabolic equations in Chebyshev series. Int. J. Comput. Math. 7 (1979), 217–225.

    Article  MathSciNet  MATH  Google Scholar 

  32. M Berzins and P M Dew, A generalised Chebyshev method for non-linear parabolic equations in one space variable. IMA J. Numer. Anal. 1 (1981), 469–487.

    Article  MathSciNet  MATH  Google Scholar 

  33. D Gottlieb, The stability of pseudospectral — Chebyshev methods. Maths of Comp. 36 (1981), 107–118.

    Article  MathSciNet  MATH  Google Scholar 

  34. D Gottlieb and S A Orszag, "Numerical Analysis of Spectral Methods: Theory and Applications", SIAM Publications, Philadelphia 1977.

    Book  MATH  Google Scholar 

  35. D Elliott, A method for the numerical integration of the one-dimensional heat equation using Chebyshev series. Proc. Camb. Phil. Soc. 57 (1961), 823–832.

    Article  MathSciNet  MATH  Google Scholar 

  36. J C Mason, A Chebyshev method for the numerical solution of the one-dimensional heat equation. Proc. 22nd ACM Nat. Conf. Thompson Book Co., Washington DC., (1967), 115–124.

    Google Scholar 

  37. L Fox and I B Parker, "Chebyshev Polynomials in Numerical Analysis", Oxford University Press, 1968.

    Google Scholar 

  38. J C Mason, Chebyshev polynomial approximations for the L-membrane eigenvalue problem. SIAM J. Appl. Math. 15 (1967), 172–186.

    Article  MathSciNet  MATH  Google Scholar 

  39. D B Haidvogel and T Zang, The accurate solution of Poisson's equation by expansion in Chebyshev polynomials. J. Comp. Phys. 30 (1979), 167–180.

    Article  MathSciNet  MATH  Google Scholar 

  40. J C Mason, The vector Chebyshev tau method — a new fast method for linear partial differential equations. RMCS Report 79/3 (1979), 25pp.

    Google Scholar 

  41. L M Delves and C A Hall, An implicit matching principle for global element methods. JIMA. 23 (1979), 223–224.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Russell Graves-Morris Edward B. Saff Richard S. Varga

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Mason, J. (1984). Some properties and applications of Chebyshev polynomial and rational approximation. In: Graves-Morris, P.R., Saff, E.B., Varga, R.S. (eds) Rational Approximation and Interpolation. Lecture Notes in Mathematics, vol 1105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0072398

Download citation

  • DOI: https://doi.org/10.1007/BFb0072398

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13899-0

  • Online ISBN: 978-3-540-39113-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics