Groups with a small covering number

  • Zvi Arad
  • David Chillag
  • Gadi Moran
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1112)


The covering number of a group G is the smallest integer k, such that Ck=G for all nonidentity conjugacy classes C of G. If no such integer exists, the covering number is defined to be ω, the smallest infinite ordinal. In this article the frequency of groups with covering number equal to two is studied. While such finite groups are rare, there are many natural examples of such infinite groups.


Finite Group Conjugacy Class Simple Group Chevalley Group Character Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Z. Arad, M. Herzog and J. Stavi, Powers and product of conjugacy classes in groups, to appear. (Chapter 1 of this book).Google Scholar
  2. [2]
    M. Aschbacher and G. Seitz, Involutions in Chevalley groups over field of even order, Nagoya Math. J. 63 (1976), 1–91.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    E. Bertram, Even permutations as a product of two conjugate cycles, J. Combinatorial Theory 12 (1972), 368–380.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. L. Brenner, Covering theorems for nonabelian simple groups II, IV, VIII, IX, J. Combinatorial Theory 14 (1973), 264–269; Jñãnabha Sec. A, Vol. 3 (1973), 77–84; Australian J. of Math. 25 (1978), 21–214; ARS Combinatorica 4 (1977), 151–176.CrossRefzbMATHGoogle Scholar
  5. [5]
    M. Burgoyne and C. Williamson, Centralizers of involutions in Chevalley groups of odd characteristic, to appear.Google Scholar
  6. [6]
    B. Chang and R. Ree, The characters of G2(q), Symposia Math. Academic Press, (1974), 395–413.Google Scholar
  7. [7]
    M. Droste, Products of conjugacy classes of the infinite symmetric group, Discrete Mathematics, to appear.Google Scholar
  8. [8]
    Enomoto, The characters of the finite Chevalley group G2(q), q=3f, Japan. J. Math. (N.S.) 2 (1976), 191–248.MathSciNetzbMATHGoogle Scholar
  9. [9]
    W. A. Simpson and J. S. Frame, The character tables for SL(3, q), SU(3, q2), PSL(3, q), PSU(3, q2), Canadian J. Math. 25, 486–494.Google Scholar
  10. [10]
    D. Gorenstien, The classification of finite simple groups, Bull. Amer. Math. Soc. 1 (1979), 43–199.MathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Gorenstein, Finite groups the centralizers of whose involutions have normal 2-complement, Canad. J. Math. 21 (1969), 335–357.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.Google Scholar
  13. [13]
    D. C. Hunt, Character tables of certain finite simple groups, Bull. Australian Math. Soc. 5 (1971), 1–42.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Lyon, Evidence for a new finite simple group, J. Algebra 20 (1972), 540–569.MathSciNetCrossRefGoogle Scholar
  15. [15]
    P. J. Lambert, The character tables of known finite simple group of order less than 106. Typed notes.Google Scholar
  16. [16]
    J. McKay, The nonabelian simple groups G, |G|<106-character tables, Comm. in Algebra, 7 (13) (1979), 1407–1445.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    G. Moran, Parity features for classes of the infinite symmetric group, J. Combinatorial Theory A 33 (1982), 82–98.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    G. Moran, The product of two reflection classes of the symmetric group, Discrete Math., 15 (1976), 63–77.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Moran, Of planar Eulerian graphs and permutations, to appear.Google Scholar
  20. [20]
    G. A. Miller. On the product of two substitutions, Amer. J. Math. 22 (1900), 185–190.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Parrot, A characterization of the Rudvalis simple group, Proc. London Math. Soc. (3) 32 (1976), 25–51.MathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Stavi, The covering numbers of the finite alternating groups, in preparation.Google Scholar
  23. [23]
    J. Schreir and S. Ulam, Über die permutationsgruppe der Natürlichen Zahlenfolge, Studia Math. 4 (1933), 134–141.zbMATHGoogle Scholar
  24. [24]
    M. Suzuki, On a class of doubly transitive groups, Ann. of Mat. (2) 75, 105–145 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math. (2) 1965, 191–212.Google Scholar
  26. [26]
    W. R. Scott, Group Theory, Prentice Hall 1964.Google Scholar
  27. [27]
    S. A. Syskin, Abstract properties of the simple sporadic groups, Russian Math. Surveys 35:5 (1980), 209–246.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J. S. Williams, Prime graph components of finite groups, J. or Algebra 69 (1981), 487–513.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    N. Ward, On Ree’s series of simple groups, Tran. of the A. M. S., 12 (1966), 62–89.zbMATHGoogle Scholar
  30. [30]
    D. Wright, The irreducible characters of the Suzuki simple group of order 448 345 497 600, J. of Algebra 29 (1974), 303–323.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Zvi Arad
    • 1
    • 2
  • David Chillag
    • 3
    • 4
  • Gadi Moran
    • 5
    • 6
  1. 1.Department of MathematicsBar-Ilan UniversityRamat-GanIsrael
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada
  3. 3.Department of Mathematics TechnionIsrael Inst. of TechnologyHaifaIsrael
  4. 4.Department of MathematicsUniversity of Hawaii at ManoaHonolulu
  5. 5.Department of MathematicsUniversity of HaifaHaifaIsrael
  6. 6.Department of MathematicsYork UniversityTorontoCanada

Personalised recommendations