Advertisement

Introduction

  • Zvi Arad
  • Marcel Herzog
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1112)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.A. Bertram, Even permutations as product of two conjugate cycles, J. Combinatorial Theory (A) 12 (1972), 368–380.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.L. Brenner, Covering theorems for finite nonabelian simple groups, I, Colloq. Math. 32 (1974), 39–48.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J.L. Brenner, Covering theorems for nonabelian simple groups, II, J. Combinatorial Theory, (A) 14 (1973), 264–269.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J.L. Brenner and L. Carlitz, Covering theorems for finite non-abelian simple groups, III Solution of the equation x2+y2+y−2=a in a finite field, Rend. Seminario Mat. di Padova 55 (1976), 81–90.MathSciNetGoogle Scholar
  5. [5]
    J.L. Brenner, Covering theorems for finite nonabelian simple groups, IV, Jñānabha, Sec. A, 3 (1975), 77–84.zbMATHGoogle Scholar
  6. [6]
    J.L. Brenner, R.M. Cranwell and J. Riddell, Covering theorems for nonabelian simple groups, V, Pacific J. Math. 58 (1974), 55–60.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J.L. Brenner and J. Riddell, Noncanonical factorization of a permutation (≡Covering theorms VI), Amer. Math. Monthly, 84 (1977), 39–40.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J.L. Brenner and J. Riddell, Covering theorems for nonabelian simple groups, VII, Asymptotics in the alternating groups, Ars Combinatoria 1 (1976), 77–108.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J.L. Brenner, Covering theorems for Finasigs VIII — Almost all conjugacy classes in An have exponent ≤ 4, J. Austral. Math. Soc. 25 (1978), 210–214.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.L. Brenner, Covering theorems for finite nonabelian simple groups, IX, ARS Combinatoria 4 (1977), 151–176.MathSciNetzbMATHGoogle Scholar
  11. [11]
    W. Feit, R. Lyndon and L. Scott, A remark about permutations, J. Combinatorial Theory 18 (1975), 234–238.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Herzog and K.B. Reid, Number of factors in k-cycle decompositions of permutations, Proc-4th Australian Conference Combinatorial Math (Springer Lecture Notes in Math. 560 (1976), 123–131.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. Herzog and K.B. Reid, Representation of permutations as products of cycles of fixed length, J. Austral. Math. Soc. 22 (1977), 321–331.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307–314.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R. Ree, A theorem on permutations, J. Combinatorial Theory 10 (1971), 174–175.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J. Stavi, Covering numbers of the alternating groups (manuscript).Google Scholar
  17. [17]
    J. Szep, Sui gruppi factorizabili non semplici, Rend. Mat. e Appl. 22 (1963), 245–252.MathSciNetzbMATHGoogle Scholar
  18. [18]
    M. Droste, Products of conjugacy classes of the infinite symmetric groups, Discrete Math. 47 (1983), 35–48.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Zvi Arad
  • Marcel Herzog

There are no affiliations available

Personalised recommendations