Advertisement

n

  • H. Alexander
  • Frank Forelli
  • G. M. Henkin
  • R. G. Novikov
Problems
Part of the Lecture Notes in Mathematics book series (LNM, volume 1043)

Keywords

Extreme Point Symmetric Domain Complex BANACH Space Classical Domain Compact Open Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander H. Polynomial approximation and hulls in sets of finite linear measure in ℂn.-Amer.J.Math., 1971, 93, 65–74.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alexander H., Wermer J. On the approximation of singularity sets by analytic varieties.-Pacific J.Math., 1983, 104, 263–268.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Белощапка В.К. Об одном метрическом свойстве аналитических множеств.-Иэв.АН СССР, сер.матем., 1976, 40, No 6, 1409–1415.Google Scholar
  4. 4.
    Головин В.М. Полиномиальная выпуклость и множества конечной линейной меры в С o-Сиб.матем.журн., 1979, 20, No 5, 990–996.Google Scholar
  5. 5.
    Stolzenberg G. A hull with no analytic structure.-J. of Math.and Mech., 1963, 12, 103–112.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Витущкин А.Г. Об одной эадаче В.Рудина.-Докл.АН СССР, 1973, 213, 14–15.Google Scholar
  7. 7.
    Wermer J. Polynomially convex hulls and analyticity.-Arkiv för mat., 1982, 20, 129–135.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Forelli F. Measures whose Poisson integrals are pluriharmonic II.-Illinois J.Math., 1975, 19, 584–592.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Forelli F. Some extreme rays of the positive pluriharmonic functions.-Canad.Math.J., 1979, 31, 9–16.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Forelli F. A necessary condition on the extreme points of a class of holomorphic functions.-Pacific J. Math., 1977, 73, 81–86.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ahern P., Rudin W. Factorizations of bounded holomorphic functions.-Duke Math.J., 1972, 39, 767–777.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Alexander H. Proper holomorphic mappings in ℂn.-Indiana Univ.Math.J., 1977, 26, 137–146.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Туманов А.Е., Хенкин Г.М. Локальная характериэа-ция аналитических автоморфиэмов классических областей.-Докл. АН СССР, 1982, 267, No 4, 796–799.Google Scholar
  3. 3.
    Александров А.Д. К основам теории относительности.-Вестн.ЛГУ, 1976, 19, 5–28.Google Scholar
  4. 4.
    Александров А.Б. Сушествование внутренних функций в щаре.-Матем.сб., 1982, 118, 147–163.Google Scholar
  5. 5.
    Rudin W. Holomorphic maps that extend to automorphism of a ball.-Proc.Amer.Soc., 1981, 81, 429–432.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bell S.R. Proper holomorphic mapping between circular domains.-Comm.Math.Helv., 1982, 57, 532–538.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • H. Alexander
    • 1
  • Frank Forelli
    • 2
  • G. M. Henkin
    • 3
  • R. G. Novikov
    • 4
  1. 1.Department of MathematicsUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Dept. of Math.University of WisconsinMadisonUSA
  3. 3.Центральный Экономико-математ ический институт АН СССРСССРМосква
  4. 4.Ленинские Горн, МГУ, мех.-мат.факультетСССРМосква

Personalised recommendations