Advertisement

Singular integrals, BMO, Hp

  • R. R. Coifman
  • Yves Meyer
  • G. C. Tumarkin
  • Benjamin Muckenhoupt
  • Peter W. Jones
  • S. V. Kisliakov
  • I.È. Verbitsky
  • N.Ya. Krupnik
  • Stephen Semmes
  • Richard Rochberg
  • John Garnett
  • Albert Baernstein
  • Donald Sarason
  • J. M. Anderson
  • Sun-Yung A. Chang
  • Sun-Yung A. Chang
  • Patrick Ahern
  • Peter W. Jones
  • A. B. Aleksandrov
  • V. P. Havin
  • Morisuke Hasumi
  • Peter G. Casazza
Problems
Part of the Lecture Notes in Mathematics book series (LNM, volume 1043)

Keywords

Riemann Surface Hardy Space Toeplitz Operator Blaschke Product Bloch Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calderón A.P. On the Cauchy integral on Lipschitz curves and related operators.-Proc.N.Ac.Sc. 1977, 4, 1324–27.CrossRefzbMATHGoogle Scholar
  2. 2.
    Coifman R.R., Meyer Y. Commutateurs d'integrales singulières et opérateurs multilinéaires.-Ann. Inst. Fourier (Grenoble), 1978, 28, N 3, xi, 177–202.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Coifman R.R., Meyer Y. Multilinear pseudo-differential operators and commutators, to appear.Google Scholar

References

  1. 1.
    Хведелидэе Б.В. Метод интегралов типа Кощ в раэрывных граничных эадачах теории голоморфных функций одной комплексной переменной. "Современные проблемы математики", т.7, Москва, 1975, 5–162.Google Scholar
  2. 2.
    Данилюк И.И. Нерегулярные граничные эадачи на плоскости, Москва, Наука, 1975.Google Scholar
  3. 3.
    Duren P.L., Shapiro H.S., Shields A.L. Singular measures and domains not of Smirnov type.-Duke Math. J., 1966, v.33, N 2, 247–254.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Тумаркин Г.Ц. Граничные свойства аналитических функций, представимых интегралами типа Кощи.-Матем.сб., 1971, 84 (126), No 3, 425–439.Google Scholar
  5. 5.
    Паатащвили В.А. О сингулярных интегралах Кощи.-Сообш. АН Груэ.ССР, 1969, 53, No 3, 529–532.Google Scholar
  6. 6.
    Дынькин Е.М. О равномерном приближении многочленами в комплексной плоскости.-Зап.научн.семин.ЛОМИ, 1975, 56, 164–165.Google Scholar
  7. 7.
    Дынькин Е.М. О равномерном приближении функции в жорда-новых областях.-Сиб.мат.ж. 1977, 18, No 4, 775–786.Google Scholar
  8. 8.
    Andersson Jan-Erick, Ganelius Tord. The degree of approximation by rational function with fixed poles.-Math.Z., 1977, 153, N 2, 161–166.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Тумаркин Г.Ц. Граничные свойства конформных отображений некоторых классов областей.-сб."Некоторые вопросы современной теории функций", Новосибирск, 1976, 149–160.Google Scholar
  10. 10.
    Альфорс Л. Лекции по кваэиконформным отображениям. Москва, Мир, 1969.Google Scholar
  11. 11.
    Хавин В.П. Граничные свойства интегралов типа Кощи и гармонически сопряженных функций в областях со спрямляемой границей.-Матем.сб., 1965, 68(110), 499–517.Google Scholar
  12. 12.
    Белый В.И., Миклюко в В.М. Некоторые свойства конформных и кваэиконформных отображений и прямые теоремы конструктивной теории функций.-Иэв.АН СССР, серия матем.,1974, No 6, 1343–1361.Google Scholar
  13. 13.
    Белый В.И. Конформные отображения и приближение аналитических функций в областях с кваэиконформной границей.-Мат.сб., 1977, 102, No 3, 331–361.Google Scholar

References

  1. 1.
    Cotlar M., Sadosky C. On some LP versions of the Helson-Szegö theorem.-In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth, Belmont, California, 1983, 306–317.Google Scholar
  2. 2.
    Jurkat W.B., Sampson G. On rearrangement and weight inequalities for the Fourier transform, to appear.Google Scholar
  3. 3.
    Muckenhoupt B. Weighted norm inequalities for classical operators.-Proc.Symp. in Pure Math 35 (1), 1979, 69–83.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Muckenhoupt B. Weighted norm inequalities for the Fourier transform.-Trans.Amer.Math.Soc., to appear.Google Scholar
  5. 5.
    Sawyer E. Two weight norm inequalities for certain maximal and integral operators. In: Harmonic Analysis, Lecture Notes Math. 908, Springer, Berlin 1982, 102–127.CrossRefGoogle Scholar
  6. 6.
    Sawyer E. Norm inequalities relating singular integrals and the maximal function, to appear.Google Scholar
  7. 7.
    Sawyer E. Weighted norm inequalities for the n-dimensional Hardy operator, to appear.Google Scholar

Reference

  1. 1.
    Coifman R.R., McIntosh A., Meyer Y. L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes Lipschitziennes.-Ann.Math., 1982, 116, 361–387.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Киоляков С.В. Козффициенты Фурье граничных эначений функций, аналитических в круге и в бидиоке.-Труда Матем.ин-та вы. В.А.Стеклова, 1981, 155, 77–94.Google Scholar
  2. 2.
    Bourgain J. Extensions of H-valued functions and bounded bianalytic functions. Preprint, 1982.Google Scholar

References

  1. 1.
    Гохберг И.Ц., Крупник Н.Я. О норме преобраэования Гильберта в пространстве LP.-Функц.анал. и его прил., 1968, 2, No 2, 91–92.Google Scholar
  2. 2.
    Pichorides S.K. On the best values of the constants in in the theorems of M.Riesz, Zygmund and Kolmogorov.-Studia Math., 1972, 44, N 2, 165–179.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Крупник Н.Я., Полонский Е.П. О норме оператора сингулярного интегрирования.-Функц.анал. и его прил., 1975, 9, No 4, 73–74.Google Scholar
  4. 4.
    Вербицкий И.Э. Оценка нормы функции иэ пространства Харди череэ норму ее вешественной и мнимой части.-В сб."Матем. исследования", Кищинев, Щтиинца, 1980, No 54, 16–20.Google Scholar
  5. 5.
    Вербицкий И.Э., Крупник Н.Я. Точные константы в теоремах К.И.Бабенко и Б.В.Хведелидэе об ограниченности сингулярного оператора.-Сообш.АН Груэ.ССР, 1977, 85, No 1, 21–24.Google Scholar
  6. 6.
    Гохберг И.Ц., Крупник Н.Я. Введение в теорию сингулярных интегральных операторов.-Кищинев, Щтвднца, 1973.Google Scholar
  7. 7.
    Никольский Н.К. Лекции об операторе сдвига. М.: Наука, 1980.Google Scholar
  8. 8.
    Hardy G.H., Littlewood J.E., Pólya G. Inequalities. 2nd ed. Cambridge Univ. Press, London and New York, 1952.zbMATHGoogle Scholar

References

  1. 1.
    David G. Courbes corde-arc et espaces de Hardy généralisés.-Ann.Inst.Fourier (Grenoble), 1982, 32, 227–239.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Garnett J., O'Farrell A. Sobolev approximation by a sum of subalgebras on the circle.-Pacific J.Math. 1976, 65, 55–63.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Jones P. Homeomorphisms of the line which preserve BMO, to appear in Arkiv för Matematik.Google Scholar

References

  1. 1.
    Arocena R. A refinement of the Helson-Szegö theorem and the determination of the extremal measures.-Studia Math, 1981, LXXI, 203–221.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Coifman R., Rochberg R. Projections in weighted spaces, skew projections, and inversion of Toeplitz operators.-Integral Equations and Operator Theory, 1982, 5, 145–159.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Coifman R., Rochberg R., Weiss G. Factorization Theorems for Hardy Spaces in Several Variables.-Ann. Math. 1976, 103, 611–635.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Marshall D. Blaschke products generate H.-Bull.Amer. Math.Soc., 1976, 82, 494–496.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Marshall D. Subalgebras of L containing H.-Acta Math., 1976, 137, 91–98.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hunt R.A., Muckenhoupt B., Wheeden R.L. Weighted norm inequalities for the conjugate function and Hilbert transform.-Trans.Amer.Math.Soc., 1973, 176, 227–251.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Helson H., Szegö G. A problem in prediction theory.-Ann.Math.Pure Appl., 1960, 51, 107–138.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fefferman C., Stein E.M. Hp spaces of several variables.-Acta Math., 1972, 129, 137–193.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carleson L. Two remarks on H1 and BMO.-Advances in Math., 1976, 22, 269–277.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Stein E.M. Singular integrals and differentiability properties of functions. Princeton N.J., 1970.Google Scholar
  8. 8.
    Janson S. Characterization of H1 by singular integral transforms on martingales and Rn.-Math.Scand., 1977, 41, 140–152.MathSciNetzbMATHGoogle Scholar

References

  1. 9.
    Wolff T. Counterexamples to two variants of the Helson-Szegö theorem. Preprint, 1983, Institut Mittag-Leffler, 11.Google Scholar
  2. 10.
    Jones P. Carleson measures and the Fefferman — Stein decomposition of BMO (ℝ).-Ann. of Math., 1980, 111, 197–208.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 11.
    Jones P. L-estimates for the Open image in new window-problem. To appear in Acta Math.Google Scholar
  4. 12.
    Uchiyama A. A constructive proof of the Fefferman — Stein decomposition of BMO (ℝn).-Acta Math., 1982, 148, 215–241.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 13.
    Stray A. Two applications of the Schur — Nevanlinna algorithm.-Pacif. J. of Math., 1980, 91, N 1, 223–232.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 14.
    Rubio de Francia J.L. Factorization and extrapolation by weights.-Bull.Amer.Math.Soc., 1982, 7, N 2, 393–395.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 15.
    Amar E. Représentation des fonctions de BMO et solutions de l'équation Open image in new window 6. Preprint, 1978, Univ. Paris XI Orsay.Google Scholar
  8. 16.
    Coifman R., Jones P.W., Rubio de Francia J.L. Constructive decomposition of BMO functions and factorization of Ap weights.-Proc.Amer.Math.Soc., 1983, 87, N 4, 675–680.MathSciNetzbMATHGoogle Scholar

References

  1. 1.
    Baernstein A. II. Univalence and bounded mean oscillation.-Mich.Math.J., 1976, 23, 217–223.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Helson H., Szegö G. A problem in prediction theory.-Ann.Mat.Pura Appl., 1960, 51, (4), 107–138.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hunt R., Muckenhoupt B., Wheeden R. Weighted norm inequalities for the conjugate function and Hilbert transform.-Trans.Amer.Math.Soc., 1973, 176, 227–251.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fefferman C., Stein E.M. Hp spaces of several variables.-Acta Math., 1972, 129, 137–193.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baernstein A. II. Integral means, univalent functions and circular symmetrization.-Acta Math., 1974, 133, 139–169.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Zygmund A. Trigonometric series, vol.I. Cambridge, Cambridge Univ.Press. 1959.zbMATHGoogle Scholar
  2. 2.
    Anderson J.M., Clunie J., Pommerenke Ch. On Bloch functions and normal functions.-J.Reine Angew.Math. 1974, 270, 12–37.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Pommerenke Ch. On univalent functions, Bloch functions and VMOA.-Math.Ann., 1978, 236, N 3, 199–208.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sarason D. Functions of vanishing mean oscillation.-Trans.Amer.Math.Soc. 1975, 207, 391–405.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Shapiro H.S. Monotonic singular functions of high smoothness.-Michigan Math.J. 1968, 15, 265–275.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kahane J.-P. Trois notes sur les ensembles parfaits linéaires.-Enseignement Math. 1969, (2), 15, 185–192.MathSciNetGoogle Scholar

References

  1. 1.
    Anderson J.M., Clunie J., Pommerenke Ch. On Bloch functions and normal functions.-J.Reine Angew. Math., 1974, 270, 12–37.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Pommerenke Ch. Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation.-Comment.Math. Helv., 1977, 52, 591–602.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anderson J.M. On division by Inner Factors.-Comment. Math.Helv., 1979, 54, N 2, 309–317.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Хавин В.П. О факториэации аналитических функций, гладких вплоть до границы.-Зан.научн.семин.ЛОМИ, 1971, 22, 202–205.Google Scholar
  5. 5.
    Гурарий В.П. О факториэации абсолютно сходяшихся рядов Тзйлора и интегралов Фурье.-Зап.научн.семин.ЛОМИ, 1972, 30, 15–32.Google Scholar

References

  1. 1.
    Chang S.-Y. A., Marshall D. A sharp inequality concerning the Dirichlet integral. 1982, preprint.Google Scholar
  2. 2.
    Moser J. A sharp form of an inequality by N.Trudinger.-Ind. Univ.Math.J., 1971, 20, 1077–1092.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Sarason D. Algebras between L and H.-Lect.Notes in Math.Springer-Verlag, 1976, 512, 117–129.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chang S.-Y. A. Structure of some subalgebra of L of the torus.-Proc.Symposia in Pure Math., 1979, 35, Part 1, 421–426.MathSciNetCrossRefGoogle Scholar

References

  1. 1.
    Ahern P. The mean modulus and the derivative of an inner function.-Indiana Univ.Math.J., 1979, 28, 2, 311–347.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Uchiyama A. A constructive proof of the Fefferman — Stein decomposition of BMO (ℝn).-Acta Math.,1982, 148, 215–241.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Uchiyama A. The Fefferman — Stein decomposition of smooth functions and its application to HP(ℝn). — University of Chicago, Ph.D.thesis, 1982.Google Scholar
  3. 3.
    Calderón A.P., Zygmund A. On higher gradients of harmonic functions.-Studia Math.,1964, 24, 211–226.MathSciNetzbMATHGoogle Scholar

Reference

  1. 1.
    Fefferman C., Stein E.M. Hp spaces of several variables.-Acta Math., 1972, 129, 137–193.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Hoffman K. Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, N.J., 1962.zbMATHGoogle Scholar
  2. 2.
    Helson H. Lectures on Invariant Subspaces. Academic Press, New York, 1964.zbMATHGoogle Scholar
  3. 3.
    Gamelin T. Uniform Algebras, Pretice-Hall. Englewood Cliffs, N.J., 1969.zbMATHGoogle Scholar
  4. 4.
    Parreau M. Théorème de Fatou et problème de Dirichlet pour les lignes de Green de certaines surfaces de Riemann. — Ann.Acad.Sci.Fenn.Ser.A. I, 1958, no.250/25, 8 pp.Google Scholar
  5. 5.
    Widom H. Hp sections of vector bundles over Riemann surfaces.-Ann. of Math., 1971, 94, 304–324.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hasumi M. Invariant subspaces on open Riemann surfaces.-Ann.Inst.Fourier, Grenoble,1974, 24, 4, 241–286; II, ibid. 1976, 26, 2, 273–299.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brelot M. Topology of R.S. Martin and Green lines. Lectures on Functions of a Complex Variable, pp.105–121. Univ. of Michigan Press, Ann Arbor, 1955.Google Scholar
  8. 8.
    Hayashi M. Invariant subspaces on Riemann surfaces of Parreau-Widom type. Preprint (1980).Google Scholar
  9. 9.
    Voichick M. Extreme points of bounded analytic functions on infinitely connected regions.-Proc.Amer.Math.Soc., 1966, 17, 1366–1369.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Neville C. Invariant subspaces of Hardy classes on infinitely connected open surfaces.-Memoirs of the Amer.Math.Soc., 1975, N 160.Google Scholar
  11. 11.
    Pommerenke Ch. On the Green's function of Fuchsian groups.-Ann.Acad.Sci.Fenn. Ser. A. I, 1976, 2, 408–427.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Stanton C. Bounded analytic functions on a class of open Riemann surfaces.-Pacific J.Math., 1975, 59, 557–565.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pranger W. Riemann surfaces and bounded holomorphic functions.-Trans.Amer.Math.Soc., 1980, 259, 393–400.MathSciNetCrossRefzbMATHGoogle Scholar

Reference

  1. 1.
    Casazza P.G.,Pengra R. and Sundberg C. Complemented ideals in the Disk Algebra.Israel J.Math.,vol.37.No1–2, (1980), p.76–83.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. R. Coifman
    • 1
  • Yves Meyer
    • 2
  • G. C. Tumarkin
  • Benjamin Muckenhoupt
    • 3
  • Peter W. Jones
    • 4
  • S. V. Kisliakov
  • I.È. Verbitsky
  • N.Ya. Krupnik
  • Stephen Semmes
    • 5
  • Richard Rochberg
    • 6
  • John Garnett
    • 7
  • Albert Baernstein
    • 8
  • Donald Sarason
    • 9
  • J. M. Anderson
    • 10
  • Sun-Yung A. Chang
    • 11
  • Sun-Yung A. Chang
    • 12
  • Patrick Ahern
    • 13
  • Peter W. Jones
    • 14
  • A. B. Aleksandrov
  • V. P. Havin
  • Morisuke Hasumi
    • 15
  • Peter G. Casazza
    • 16
  1. 1.Department of MathematicsWashington UniversitySt.LouisUSA
  2. 2.Faculté des Sciences d'OrsayUniversité de Paris-SudFrance
  3. 3.Math. Dept.Rutgers UniversityNew BrunswickUSA
  4. 4.Institut Mittag-LefflerDjursholmSweden
  5. 5.Dept. of MathematicsYale UniversityNew HavenUSA
  6. 6.Washington UniversitySt.LouisUSA
  7. 7.University of CaliforniaLos AngelesUSA
  8. 8.Washington UniversitySt.LouisUSA
  9. 9.Dept.Math.University of CaliforniaBerkeleyUSA
  10. 10.Department of MathematicsUniversity College, LondonLondonEngland
  11. 11.Math.Dept.University of MarylandCollege ParkUSA
  12. 12.Math.Dept.University of MarylandCollege ParkUSA
  13. 13.University of WisconsinMadisonUSA
  14. 14.Institut Mittag-LefflerDjursholmSweden
  15. 15.Department of MathematicsIbaraki UniversityMito, IbarakiJapan
  16. 16.Department of MathematicsUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations