Advertisement

Banach algebras

  • G. J. Murphy
  • M. R. F. Smyth
  • T. T. West
  • Vlastimil Pták
  • N. J. Young
  • Jaroslav Zemánek
  • H. G. Dales
  • Gavin Brown
  • William Moran
  • Satoru Igari
  • Wiesław Żelazko
  • L. de Branges
  • T. W. Gamelin
  • Donald Sarason
  • J. Wermer
  • Richard Rochberg
Problems
Part of the Lecture Notes in Mathematics book series (LNM, volume 1043)

Keywords

Spectral Radius Banach Algebra Uniform Algebra Analytic Disc Maximal Ideal Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smyth M.R.F., West T.T. The spectral radius formula in quotient algebras.-Math.Zeit. 1975,145, 157–161.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Murphy G.J., West T.T. Spectral radius formulae.-Proc.Edinburgh Math.Soc. (2), 1979, 22, N 3, 272–275.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Pedersen G.K. Spectral formulas in quotient algebras. — Math.Zeit. 148.Google Scholar
  4. 4.
    Akermann C.A., Pedersen G.K. Ideal perturbations of elements in C*-algebras.-Math.Scand. 1977,41, 137–139MathSciNetGoogle Scholar

References

  1. 1.
    Pták V. Norms and the spectral radius of matrices.-Czechosl.Math.J. 1962, 87, 553–557.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Pták V. Spectral radius, norms of iterates and the critical exponent.-Lin.Alg.Appl. 1968, 1, 245–260.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Pták V., Young N.J. Functions of operators and the spectral radius.-Lin.Alg.Appl. 1980, 29, 357–392.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Young N.J. A maximum principle for interpolation in H, Acta Sci.Math.Szeged.Google Scholar

References

  1. 1.
    Helton J.W. Non-Euclidean functional analysis and electronics.-Bull.Amer.Math.Soc., 1982, 7, 1–64MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Никольский Н.К. Лекции об операторе сдвига. Москва, Наука, 1980.Google Scholar
  3. 3.
    Pták V., Young N.J. Functions of operators and the spectral radius.-Linear Algebra and its Appl., 1980, 29, 357–392MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sarason D. Generalized interpolation in H.-Trans.Amer.Math.Soc., 1967, 127, 179–203.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Young N.J. A maximum principle for interpolation in H.-Acta Sci.Math., 1981, 43, N 1–2, 147–152.MathSciNetzbMATHGoogle Scholar

References

  1. 1.
    Makai E., Jr., Zemánek J. The surjectivity radius, packing numbers and boundedness below of linear operators.-Integr.Eq.Oper.Theory, 1983, 6.Google Scholar
  2. 2.
    Müller V. The inverse spectral radius formula and removability of spectrum.Google Scholar
  3. 3.
    Paulsen V. The group of invertible elements in a Banach algebra.-Colloq.Math., 1982, 47.Google Scholar
  4. 4.
    Yuen Y. Groups of invertible elements of Banach algebras.-Bull.Amer.Math.Soc., 1973, 79.Google Scholar
  5. 5.
    Zemánek J. Geometric interpretation of the essential minimum modulus.-Operator Theory: Advances and Applications, vol.6 p.225–227. Birkhäuser Verlag, Basel, 1982.Google Scholar
  6. 6.
    Zemánek J. The semi-Fredholm radius of a linear operator.-To appear.Google Scholar

References

  1. 1.
    Aupetit B. Propriétés spectrales des algèbres de Banach.-Lect.Notes Math., 1979, 735, Springer-Verlag.Google Scholar
  2. 2.
    Aupetit B. The uniqueness of the complete norm topology in Banach algebras and Banach-Jordan algebras.-J.Functional Analysis, 1982, 47, 1–6.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dales H.G. Automatic continuity: a survey.-Bull.London Math.Soc., 1978, 10, 129–183.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Johnson B.E. Continuity of homomorphisms of algebras of operators II.-J.London Math.Soc.(2),1969, 1, 81–84.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sinclair A.M. Homomorphisms from C*-algebras.-Proc. London Math.Soc., (3), 1974, 29, 435–452; Corrigendum 1976, 32, 322MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Sinclair A.M. Automatic continuity of linear operators.-London Math.Soc.Lecture Note Series, 21, C.U.P., Cambridge,1976.Google Scholar

References

  1. 1.
    Gamelin T.W. Uniform Algebras. New Jersey, Prentice-Hall, 1969.zbMATHGoogle Scholar
  2. 2.
    Taylor J.L. Measure Algebras. CBMS Regional confer.ser. math., 16, Providence, Amer.Math.Soc., 1973.Google Scholar
  3. 3.
    Brown G., Moran W. Gleason parts for measure algebras.-Math.Proc.Camb.Phil.Soc., 1976, 79, 321–327.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Щрейдер Ю.А. Об одном примере обобщённого характера.-Матем.сб., 1951, 29, No 2, 419–426.Google Scholar
  5. 5.
    Brown G., Moran W. Point derivations on M(G).-Bull.Lond.Math.Soc., 1976, 8, 57–64.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Johnson B.E. The Šilov boundary of M(G).-Trans.Amer.Math.Soc., 1968, 134, 289–296.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brown G., Moran W. Maximal elements of the maximal ideal space of a measure algebra.-Math.Ann., 1979/80, 246, N 2, 131–140.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brown G., Moran W. Analytic discs in the maximal ideal space of M(G).-Pacif.J.Math., 1978, 75, N 1, 45–57.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Щрейдер Ю.А. Строение максимальных идеалов в кольцах мер со сверткой.-Матем.сб., 1950, 27, 297–318.Google Scholar
  2. 2.
    Rudin W. The automorphisms and the endomorphisms of the group algebra of the unit circle.-Acta Math., 1976, 95, 39–56.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Igari S., Kanjin Y. The homomorphisms of the measure algebras on the unit circle.-J.Math.Soc.Japan, 1979, 31, N 3, 503–512.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Żelazko W. On a certain class of non-removable ideals in Banach algebras.-Studia Math. 1972, 44, 87–92.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Żelazko W. On domination and separation of ideals in commutative Banach algebras.-Studia Math. 1981, 71, 179–189.MathSciNetzbMATHGoogle Scholar

References

  1. 1.
    de Branges L., Trutt D. Quantum Cesàro operators.-In: Topics in functional analysis (essays dedicated to M.G.Krein on the occasion of his 70th birthday), Advances in Math., Suppl.Studies, 3, Academic Press, New York, 1978, pp.1–24.Google Scholar
  2. 2.
    de Branges L. The Riemann mapping theorem.-J.Math.Anal.Appl., 1978, 66, N 1, 60–81.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Gamelin T.W. The algebra of bounded analytic functions.-Bull.Amer.Math.Soc., 1973, 79, 1095–1108.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Douglas R.G., Rudin W. Approximation by inner functions.-Pacific.J.Math., 1969, 31, 313–320.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ando T. On the predual of H. — Special issue dedicated to Władisław Orlicz on the occasion of his seventy-fifth birthday. Comment.Math.Special Issue, 1978, 1, 33–40.MathSciNetGoogle Scholar
  4. 4.
    Wojtaszczyk P. On projections in spaces of bounded analytic functions with applications.-Studia Math., 1979, 65, N 2, 147–173.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chaumat J. Unicité du prédual.-C.R.Acad.Sci.Paris, Sér A-B, 1979, 288, N 7, A411–A414.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Garnett J. An estimate for line integrals and an application to distinguished homomorphisms.-Ill.J.Math., 1975, 19, 537–541.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gamelin T.W. Cluster values of bounded analytic functions.-Trans.Amer.Math.Soc., 1977, 225, 295–306.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hayashi M. Linear extremal problems on Riemann surfaces, preprint.Google Scholar

References

  1. 1.
    Bishop E. A generalization of the Stone-Weierstrass theorem.-Pacif.J.Math., 1961, 11, 777–783.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Glicksberg I. Measures orthogonal to algebras and sets of antisymmetry.-Trans.Amer.Math.Soc., 1962, 105, 415–435.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Browder A. Introduction to Function Algebras. New York, W.A.Benjamin, Inc., 1969.zbMATHGoogle Scholar
  4. 4.
    Sarason D. Algebras of functions on the unit circle.-Bull.Amer.Math.Soc., 1973, 79, 286–299.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sarason D. Functions of vanishing mean oscillation.-Trans.Amer.Math.Soc., 1975, 207, 391–405.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Axler S., Chang S.-Y., Sarason D. Products of Toeplitz operators.-Int.Equat.Oper.Theory, 1978, 1, N 3, 285–309.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Axler S. Doctoral Dissertation. University of California, Berkeley, 1975.Google Scholar

References

  1. 8.
    Gorkin P.M. Decompositions of the maximal ideal space of L, Doctoral Dissertation, Michigan State University, East Lansing, 1982.Google Scholar
  2. 9.
    Sarason D. The Shilov and Bishop decompositions of H+C.-Conference on Harmonic Analysis in Honour of Antoni Zygmund, vol.II, pp.461–474, Wadsworth, Belmont, CA, 1983.Google Scholar

References

  1. 1.
    Blumenthal R. Holomorphically closed algebras of analytic functions.-Math.Scand., 1974, 34, 84–90.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Björk J.-E. Holomorphic convexity and analytic structures in Banach algebras.-Arkiv för Mat., 1971, 9, 39–54.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sibony N., Wermer J. Generators for A(Ω).-Trans.Amer.Math.Soc., 1974, 194, 103–114.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Jones J. Generators of the disc algebra (Dissertation), Brown University, June, 1977.Google Scholar
  5. 5a.
    Wermer J. Subalgebras of the disk algebra.-Colloque d'Analyse Harmonique et Complexe, Univ.Marseille I, Marseille, 1977.Google Scholar

References

  1. 1.
    Johnson B.E. Low Dimensional Cohomology of Banach Algebras.-Proc.Symp.Pure Math. 38, 1982, part 2, 253–259.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Rochberg R. Deformation of Uniform Algebras.-Proc. Lond.Math.Soc. (3) 1979, 39, 93–118.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Rochberg R. A Hankel Type Operator Arising in Deformation Theory.-Proc.Symp.Pure Math. 35,1979, Part I, 457–458.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • G. J. Murphy
    • 1
  • M. R. F. Smyth
    • 1
  • T. T. West
    • 1
  • Vlastimil Pták
    • 2
  • N. J. Young
    • 3
  • Jaroslav Zemánek
    • 4
  • H. G. Dales
    • 5
  • Gavin Brown
    • 6
  • William Moran
    • 7
  • Satoru Igari
    • 8
  • Wiesław Żelazko
    • 9
  • L. de Branges
    • 10
  • T. W. Gamelin
    • 11
  • Donald Sarason
    • 12
  • J. Wermer
    • 13
  • Richard Rochberg
    • 14
  1. 1.39 Trinity collegeDublin 2Ireland
  2. 2.Institute of MathematicsCzechoslovak Academy of SciencesPraha 1Czechoslovakia
  3. 3.Mathematics departmentUniversity GardensGlasgow
  4. 4.Institute of MathematicsPolish Academy of SciencesWarszawaPoland
  5. 5.School of MathematicsUniversity of LeedsLeeds
  6. 6.University of New South WalesSydneyAustralia
  7. 7.University of AdelaideAdelaideAustralia
  8. 8.Mathematical InstituteTohôku University SendaiJapan
  9. 9.Math.Inst.Polish Acad.Sc.WarszawaPoland
  10. 10.Department of Math.Purdue UniversityLafayetteUSA
  11. 11.Dept. of Math.UCLALos AngelesUSA
  12. 12.Dept.Math., BerkeleyUniversity of CaliforniaCaliforniaUSA
  13. 13.Department of Math.Brown UniversityProvidenceUSA
  14. 14.Washington UniversitySt.LouisUSA

Personalised recommendations