Divergence of multipoint Pade approximation

  • Hans Wallin
IV Section — Potential Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1014)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Karlsson, Rational interpolation with free poles in the complex plane, Department of Math., University of Umeå, No. 6, 1972.Google Scholar
  2. [2]
    R. de Montessus de Ballore, Sur les fractions continues algébriques, Bull. Soc. Math., France 30 1902, 28–36.MathSciNetzbMATHGoogle Scholar
  3. [3]
    H. Stahl, Beiträge zum Problem der Konvergenz von Padéapproximierenden, Thesis, Technische Universität Berlin, 1976.Google Scholar
  4. [4]
    V.V. Vavilov, On the convergence of the Padé approximants of meromorphic functions, Math. USSR Sb. 30, 1976, 39–49 [Russian original, Mat. Sb. 101 (143), 1976].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Wallin, Potential theory and approximation of analytic functions by rational interpolation, in Proc. Coll. Complex Anal., Joensuu, Finland, 1978, Lecture Notes in Math. 747, Springer-Verlag, 1979, 434–450.Google Scholar
  6. [6]
    H. Wallin, Rational interpolation to meromorphic functions, in Proc. Conf. Padé and Rational Approx., Theory and Applic., Amsterdam, 1980, To appear in Lecture Notes in Math.Google Scholar
  7. [7]
    D.D. Warner, Hermite interpolation with rational functions, Thesis, University of California, San Diego, La Jolla, 1974.Google Scholar
  8. [8]
    R. Wilson, Divergent continued fractions and non-polar singularities, Proc. London Math. Soc. 30, 1930, 38–57.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hans Wallin
    • 1
  1. 1.Department of MathematicsUniversity of UmeåUmeåSweden

Personalised recommendations