Advertisement

Divergence of multipoint Pade approximation

  • Hans Wallin
IV Section — Potential Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1014)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Karlsson, Rational interpolation with free poles in the complex plane, Department of Math., University of Umeå, No. 6, 1972.Google Scholar
  2. [2]
    R. de Montessus de Ballore, Sur les fractions continues algébriques, Bull. Soc. Math., France 30 1902, 28–36.MathSciNetzbMATHGoogle Scholar
  3. [3]
    H. Stahl, Beiträge zum Problem der Konvergenz von Padéapproximierenden, Thesis, Technische Universität Berlin, 1976.Google Scholar
  4. [4]
    V.V. Vavilov, On the convergence of the Padé approximants of meromorphic functions, Math. USSR Sb. 30, 1976, 39–49 [Russian original, Mat. Sb. 101 (143), 1976].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Wallin, Potential theory and approximation of analytic functions by rational interpolation, in Proc. Coll. Complex Anal., Joensuu, Finland, 1978, Lecture Notes in Math. 747, Springer-Verlag, 1979, 434–450.Google Scholar
  6. [6]
    H. Wallin, Rational interpolation to meromorphic functions, in Proc. Conf. Padé and Rational Approx., Theory and Applic., Amsterdam, 1980, To appear in Lecture Notes in Math.Google Scholar
  7. [7]
    D.D. Warner, Hermite interpolation with rational functions, Thesis, University of California, San Diego, La Jolla, 1974.Google Scholar
  8. [8]
    R. Wilson, Divergent continued fractions and non-polar singularities, Proc. London Math. Soc. 30, 1930, 38–57.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hans Wallin
    • 1
  1. 1.Department of MathematicsUniversity of UmeåUmeåSweden

Personalised recommendations