Natural localisation of a standard H-cone

  • Eugen Popa
IV Section — Potential Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1014)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bliedtner J., Hansen W. "Harmonic Spaces and Markov Processes" Z.Wahrsheinlick. 42(4), pg. 309–326Google Scholar
  2. [2]
    Boboc N., Bucur Gh., Cornea A. "H-cones and Potentail Theory" Ann.Inst.Fourier, XXV (3–4) 1975, pg. 71–108.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Boboc N., Bucur Gh., Cornea A. "Carrier Theory and Negligible Sets on a Standard H-cone Of Functions" Rev.Roumaine Math. Pures et appl. XXV (2) 1980, pg. 163–198MathSciNetzbMATHGoogle Scholar
  4. [4]
    Boboc N., Bucur Gh., Cornea A. "Order and Convexity in Potential Theory:H-cones" LNM 853, Springer 1981Google Scholar
  5. [5]
    Feyel D., de la Pradelle A. "Cônes en dualité. Applications aux fonctions de Green" LNM 518, Springer 1976Google Scholar
  6. [6]
    Lukes J., Netuka I. "The Wiener Type Solution of the Dirichlet Problem in Potential Theory" Math.Ann. 244 (1976), pg. 173MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Mokobodzki G., Sibony D. "Principe du minimum et maximalité en Théorie du potentiel" ann.Inst.Fouriet, XVII (1967) pg. 401MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Popa E. "Localisation and Product of H-cones" preprint INCREST no.lo/1979 (to appear in Rev.Roum.Math.Pures at appl.)Google Scholar
  9. [9]
    Popa E. "Standard H-cones-Standard Spaces of Balayage" (ta appear in Rev.Roum.Math.Pures appl)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Eugen Popa
    • 1
  1. 1.Seminarul MatematicUniversitatea "Al.I.Cuza"Iaşi

Personalised recommendations