Perturbations in excessive structures

  • N. Boboc
  • Gh. Bucur
IV Section — Potential Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1014)


Measurable Space Biharmonic Function Excessive Function Kernel Versus Resolvent Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Boboc et P. MustaţĂ, Considérations assiomatiques sur les fonctions poly-surharmoniques. Rev.Roum.Math.Pures et Appl. 16(8) 1971, p.1167–1184.zbMATHGoogle Scholar
  2. 2.
    N. Boboc et M. Nkomba-Tshola, Element complètement excessifs par rapport à une résolvante. Kinshasa, Zaïre, Section Math.Phys. 2, 1976, p.1–30.MathSciNetzbMATHGoogle Scholar
  3. 3.
    N. Bouleau, Espaces biharmoniques et couplage de processus de Markov. J.Math.Pures et Appl. 58, 1979, p.187–240.MathSciNetzbMATHGoogle Scholar
  4. 4.
    E.Hille and R.S.Phillips, Functional Annalysis and Semigroups. Amer.Math.Soc.Colloq.Publ. 31, 1957.Google Scholar
  5. 5.
    M.Itô, Positive eigen elements for an infinitesimal generator of a diffusion semi-group and their integral representation. Lecture Notes in Math.787, Potential Theory Copenhagen 1979, Proceedings, p.163–184.Google Scholar
  6. 6.
    M.Nicolesco, Les fonctions poly-harmonique Hermann. Paris 1936.Google Scholar
  7. 7.
    E. Smyrnelis, Axiomatique des fonctions biharmoniques. Ann. Inst.Fourier 25(1) 1975, p.35–97; 26(3) 1976, p.1–47.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • N. Boboc
  • Gh. Bucur

There are no affiliations available

Personalised recommendations