Advertisement

Potentials on locally compact non-abelian groups

  • Martha BĂnulescu
IV Section — Potential Theory
  • 206 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1014)

Keywords

Borel Subset Natural Topology Baire Space Convolution Semigroup Fine Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    C.Berg,G.Forst: Potential Theory on Locally Compact Abelian Groups, Springer Verlag,1975.Google Scholar
  2. [2]
    E.Herwitt,A.Ross:Abstract Harmonic Analysis,vol.I,Springer Verlag, 1963.Google Scholar
  3. [3]
    N.Dinculeanu: Integrarea pe spaţii local compacte,Bucureşti 1965.Google Scholar
  4. [4]
    N.Boboc,Gh.Bucur,A.Cornea:H-cones and Potential Theory,Ann.Instit. Fourier de l'Université de Grenoble,t.XXV,fasc.2 et 3,1975.Google Scholar
  5. [5]
    C.Constantinescu,A.Cornea:Potential Theory on Harmonic Spaces,Springer Verlag 1972.Google Scholar
  6. [6]
    N.Bourbaki:Elements de mathématique,Intégration,ch.7,Hermann,Paris.Google Scholar
  7. [7]
    E.M.Alfsen:Compact Convex Sets and Boundary Integrals,Springer Verlag,1971.Google Scholar
  8. [8]
    N. Bourbaki:Topologie Générale,ch.1,2,Hermann,Paris,1965.Google Scholar
  9. [9]
    N.Boboc,Gh.Bucur,A.Cornea:Carrier Theory and Negligible Sets on a Standard H-cone of Functions,Revue Roumaine de math.pures et appl.,t.XXV no2,1980.Google Scholar
  10. [10]
    N.Boboc,Gh.Bucur,A.Cornea:Order and Convexity in Potential Theory: H-Cones,Lecture Notes in Maths.853.1981.Google Scholar
  11. [11]
    N.Boboc,Gh.Siretki:Sur la compactification d'un espace topologique, Bull.Math.de la Soc.Sci.Math.Phys.de la R.P.R.,t.5(53),no3–4,1961.Google Scholar
  12. [12]
    N. Boboc,A. Cornea:Cônes convexes ordonnés.H-cônes et adjoints de H-cones,C.R.Acad.Sc.Paris,t.270,p.596–599 (2 mars 1970).MathSciNetzbMATHGoogle Scholar
  13. [13]
    N.Boboc,Gh.Bucur,A.Cornea:Natural Topologies on H-Cones.Weak Completeness,Rev.Roum.de Math.Pures et Appl.,t.XXIV,no7,1979.Google Scholar
  14. [14]
    S.Helgason:Differential Geometry.Lie Groups and Symmetric Spaces, Academic Press,1978.Google Scholar
  15. [15]
    N. Boboc:Certains principles dans la theorie du potentiel sur variétés riemanniennes,Revue Roum.de math.pures et appl.,t.VI,3,494–500,1961.Google Scholar
  16. [16]
    N. Boboc,N. Radu:Sur l'existence de la fonction de Green pour les équations du type elliptique,definies sur des variétés différentiable, C.R.Acad.Sci.Paris 246(1958),p.3204–3207.MathSciNetzbMATHGoogle Scholar
  17. [17]
    N.Boboc,P.MustaţĂ:Espaces harmoniques associés aux opérateurs différentiels linéares du second ordre de type elliptique,Lecture Notes in Math.68,1968.Google Scholar
  18. [18]
    M.Brelot:Eléments de la théorie classique du potentiel,4eedition, 1969.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Martha BĂnulescu

There are no affiliations available

Personalised recommendations