Advertisement

Produktzerlegung und Äquivalenz von Raumkeimen I Der allgemeine Fall

  • K. Spallek
III Section — Several Complex Variables
Part of the Lecture Notes in Mathematics book series (LNM, volume 1014)

Klassifikation

32C40 32K15 58A35 58A40 58C25 

Abstract

As an application of [19] we generalise Ehpraims product-structure-theorems for irreducible complex-analytic germs in [4], [5], [6] to relative arbitrary germs of spaces with arbitrary classes of differentiability, including all complex analytic, real analytic, semi-analytic or sub-analytic germs. This opens a way to generalise Ephraims C-classification of irreducible complex analytic germs ([21]).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Campo, N.A': Le nombre de Lefschetz d'une monodromie. Indag. Math. 35 (1973), 113–118MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Becker, J.: Ck and analytic equivalence of complex analytic Varieties, Math. Ann. 225, (1977), 57–67MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Bloom, T.: C1-functions on a complex analytic variety. Duke Math. J. 36 (1969), 283–296MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Ephraim, R.: C and analytic equivalence of singularities. Proc. of Conference of Complex Analysis 1972, Rice Univ. StudiesGoogle Scholar
  5. [5]
    Ephraim, R.: The cartesian product structure of singularities. Trans. Amer. Math. Soc. 224, (1976), 299–311MathSciNetzbMATHGoogle Scholar
  6. [6]
    Ephraim, R.: Cartesian product structure of singularities. Proc. of Symp. in pure Math., 30 (1977), 21–23MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Gibson, C.G.; Wirthmüller, K.; Plessis, A.A. du; Looijenga, E.J.N.: Topological stability of smooth mappings Springer Lecture Notes in Math., 552 (1977)Google Scholar
  8. [8]
    Gottschling, E.: Invarianten endlicher Gruppen und biholomorphe Abbildungen. Inv. Math. 6 (1969), 315–326MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Hironáka, H.: Subanalytic sets. Number Theory, Algebraic Geometry and Commutative Algebra. In honour of Y. Akizuki, Kinokuniya, Tokio (1973), p 453–493Google Scholar
  10. [10]
    Lojasiewicz, S.: Ensembles semi-analytic, polycopie IHES (1965)Google Scholar
  11. [11]
    Milnor, J.: Singular points of complex hypersurfaces. Annales of Math. Studies No. 61, New York, Princeton Univ. Press 1968zbMATHGoogle Scholar
  12. [12]
    Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. IHES No. 9 (1961), 5–22Google Scholar
  13. [13]
    Prill, D.: Local classification of quotients of complex manifolds. Dukemath. Journ. 34 (1967), 375–386MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Reichard, K.: C-Diffeomorphismen semi-und subanalytischer Mengen. Erscheint in Compositio Mathematica, 1981Google Scholar
  15. [15]
    Reichard, K.: Lokale Klassifikation von Quotientens ingularitäten reeller Mannigfaltigkeiten nach diskreten Gruppen. preprint BochumGoogle Scholar
  16. [16]
    Reichard, K.: Produktzerlegung von Quotientensingularitäten, preprint BochumGoogle Scholar
  17. [17]
    Spallek, K.: Über Singularitäten analytischer Mengen. Math. Ann. 172, (1967), 249–268MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Spallek, K.: Differenzierbare Räume. Math. Ann. 180 (1969), 269–296MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Spallek, K.: Geometrische Bedingungen für die Integrabilität von Vektorfeldern auf Teilmengen des Rn. manuscripta math. 25 (1978), 147–160MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Spallek, K.: L-platte Funktionen auf semianalytischen Mengen. Math. Ann. 227 (1977), 277–286MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Spallek, K.: Produktzerlegung und Äquivalenz von Raumkeimen II.Google Scholar
  22. [22]
    Spallek, K.: Differenzierbare und analytische Struktur auf analytischen und semianalytischen Räumen. preprintGoogle Scholar
  23. [23]
    Strub, R.: Vollständige Klassifikation der Singularitäten von Quotienten von unendlich oft reell-differenzierbaren Mannigfaltigkeiten nach eigentlich diskontinuierlichen Gruppen. Dissertation, Mainz (1980)Google Scholar
  24. [24]
    Thom, R.: Ensembles et morphismes stratifies. Bull. Amer. Math. Soc. 75 (1969), 496–549MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Wavrik, J.J.: A theorem on solutions of analytic equations with applications to deformations of complex structures. Math.Am. 216 (1975), 127–142MathSciNetzbMATHGoogle Scholar
  26. [26]
    Whitney, H.: Tangents to an analytic variety. Am. of Math. 81 (1965), 496–549MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. Spallek
    • 1
  1. 1.Ruhr-Universität Bochum Fachbereich MathematikBochum 1

Personalised recommendations