Advertisement

Holomorphic reductions of homogeneous spaces

  • Bruce Gilligan
III Section — Several Complex Variables
Part of the Lecture Notes in Mathematics book series (LNM, volume 1014)

Keywords

Complex Manifold Function Algebra Maximal Compact Subgroup Complex Subgroup Complex Homogeneous Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. 1.
    Ahiezer,D.N., Invariant meromorphic functions on semi-simple complex Lie groups, Invent. Math. (to appear).Google Scholar
  2. 2.
    Auslander, L., On radicals of discrete subgroups of Lie groups, Amer. J. Math. 85 (1963), 145–150.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barth, W. and M. Otte, Invariante holomorphe Funktionen auf reduktiven Liegruppen, Math. Ann. 201 (1973), 97–112.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Behnke, H., Über die Fortsetzbarkeiten analytischer Funktionen mehrerer Veränderlichen und den Zusammenhang der Singularitäten, Math. Ann. 117 (1940/41), 89–97MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bialynicki-Birula, A., G. Hochschild and G. Mostow, Extensions of representations of algebraic linear groups, Amer. J. Math. 85 (1963), 131–144.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bianchi, L., Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici imaginari, Math. Ann. 40 (1892), 332–412.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blanchard, A., Espaces fibrés kählériens compacts, C.R. Acad. Sc. Paris 238 (1954), 2281–2283.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bochner, S. and D. Montgomery, Groups on analytic manifolds, Ann. of Math. 48 (1947), 659–669.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borel, A., Les bouts des espaces homogènes de groupes de Lie, Ann. of Math. 58 (1953), 443–457.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Borel, A. and R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145 (1962), 429–439.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chow,W.L., On the projective embeddings of homogeneous varieties. Algebraic Geometry and Topology, (A symposium in honor of S. Lefschetz), 122–128, Princeton Univ. Press, 1957.Google Scholar
  12. 12.
    Freudenthal, H., Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), 692–713.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gilligan,B., Ends of complex homogeneous manifolds having nonconstant holomorphic functions, Arch. Math. (to appear).Google Scholar
  14. 14.
    Gilligan, B. and A. Huckleberry, On non-compact complex nil-manifolds, Math. Ann. 238 (1978), 39–49.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gilligan,B. and A.Huckleberry, Complex homogeneous manifolds with two ends, Michigan Math. J. (to appear).Google Scholar
  16. 16.
    Grauert, H., Bemerkungswerte pseudokonvexe Mannigfaltigkeiten, Math. Z. 81 (1963), 377–391.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grauert, H. and R. Remmert, Über kompakte homogene komplexe Mannigfaltigkeiten, Arch. Math. 13 (1962), 498–507.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Holmann, H., Holomorphe Blätterungen komplexer Räume, Comment. Math. Helv. 47 (1972), 185–204.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Iwasawa, K., On some types of topological groups, Ann. of Math. 50 (1949), 507–558.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kaup, W., Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43–70.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Matsushima, Y., Espaces homogènes de Stein des groupes de Lie complexes, I, Nagoya Math. J. 16 (1960), 205–218.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Matsushima, Y., Espaces homogènes de Stein des groupes de Lie complexes, II, Nagoya Math. J. 18 (1961), 153–164.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Matsushima, Y. and A. Morimoto, Sur certaines espace fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137–155.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Morimoto,A., Non-compact complex Lie groups without non-constant holomorphic functions. Proceedings of the Conference on Complex Analysis, Minneapolis, 1964, 256–272.Google Scholar
  25. 25.
    Otte, M. and J. Potters Beispiele homogener Mannigfaltigkeiten, Manuscripta Math. 10 (1973), 117–127.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Remmert, R., Meromorphe Funktionen in kompakten komplexen Räumen, Math. Ann. 132 (1956), 277–288.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Remmert,R., Reduction of Complex Spaces. Seminar on Analytic Functions, Princeton, 1958, 190–205.Google Scholar
  28. 28.
    Remmert, R. and A. van de Ven, Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten, Topology 2 (1963), 137–157.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rossi, H., Homogeneous strongly pseudoconvex hypersurfaces, Rice Univ. Studies 59 (1972), 131–145.MathSciNetGoogle Scholar
  30. 30.
    Serre,J-P., Quelques problèmes globaux relatifs aux variétés de Stein, Colloque sur les fonctions de plusieurs variables, Bruxelles, 1953, 57–68.Google Scholar
  31. 31.
    Siegel, C.L., Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen, Math-Phys. Kl. IIa (1955), 71–77.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Skoda, H., Fibrés holomorphes à base et à fibre de Stein, Invent. Math. 43 (1977), 97–107.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Snow,J.E., Complex solv-manifolds of dimension two and three, Univ. of Notre Dame, Ph.D. Thesis, 1979.Google Scholar
  34. 34.
    Stein, K., Analytische Zerlegungen komplexer Räume, Math. Ann. 132 (1956), 63–93.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Steinsiek,M., Universität Münster, Dissertation (to appear).Google Scholar
  36. 36.
    Tits, J., Espaces homogènes complexes compacts, Comment. Math. Helv. 37 (1962), 111–120.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Vogt,C., Geradenbündel auf toroiden Gruppen, Universität Düsseldorf, Dissertation, 1981.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Bruce Gilligan
    • 1
  1. 1.University of ReginaReginaCanada

Personalised recommendations