Advertisement

Un théorème d'annulation pour les fibrés en droites semi-positifs sur une variété kählérienne faiblement 1-complète

  • Osama Abdelkader
III Section — Several Complex Variables
Part of the Lecture Notes in Mathematics book series (LNM, volume 1014)

Keywords

Complex Manifold Carleman Estimate Note Encore Relativement Compact Nous Allons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    ABDELKADER (O.).-Annulation de la cohomologie d'une variété kählérienne faiblement 1-complète à valeurs dans un fibré vectoriel holomorphe semi-positif. C.R.A.S. Paris, t. 290, série A, p. 75, 1980.MathSciNetzbMATHGoogle Scholar
  2. [2]
    ANDREOTTI (A.) and VESENTINI (E.).-Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Publ. I.H.E.S., no 25, p. 81–130, 1965.Google Scholar
  3. [3]
    GIRBAU (J.).-Sur le théorème de Le Potier d'annulation de la cohomologie. C.R.A.S., Paris, t. 283, série A, p. 355, 1976.MathSciNetzbMATHGoogle Scholar
  4. [4]
    HÖRMANDER (L.).-L2 estimates and existence theorems for the \(\bar \partial \) operators. Acta Math., 113, pp. 89–152, 1965.MathSciNetCrossRefGoogle Scholar
  5. [5]
    HÖRMANDER (L.).-An introduction to complex analysis in several variables. North-Holland, 1973.Google Scholar
  6. [6]
    KATO (T.).-Purturbation theory for linear operators, Springer-Verlag, Berlin, vol. 132, 1966.CrossRefGoogle Scholar
  7. [7]
    KODAÏRA (K.) and MORROW (J.).-Complex manifolds, Halt. Rinehart, and Winston, inc., 1971.Google Scholar
  8. [8]
    KAZAMA (H.).-Approximation theorem and application to Nakano's vanishing theorem for weakly 1-complete manifolds, Memoir of the Faculty of Science, Kyushu University, ser. A, vol. 27, no 2, 1973.Google Scholar
  9. [9]
    NAKANO (S.).-On the inverse of monoidal transformation. Publ. R.I.M.S., vol. 6, pp. 483–502, 1970–1971.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    NAKANO (S.).-Vanishing theorems for weakly 1-complete manifolds II. Publ.R.I.M.S., Kyoto University 10, pp. 101–110, 1974.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    OHSAWA (T.) and TAKEGOSHI (K.).-A vanishing theorem for Hp(X, Ωq(B)) on weakly 1-complete manifolds. A paraître.Google Scholar
  12. [12]
    SKODA (H.).-Remarques à propos des théorèmes d'annulation pour les fibrés semipositifs. Séminaire P.Lelong,H.Skoda (Analyse), année 1978–1980, Lecture Notes in Math., no 822, Springer Verlag, Berlin-Heidelberg-New York, 1980, p. 252.CrossRefGoogle Scholar
  13. [13]
    VESENTINI (E.).-Lecture on Levi convexity of complex manifolds and cohomology vanishing theorems. Tata Institute of Fundamental Research, Bombay, 1967.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Osama Abdelkader

There are no affiliations available

Personalised recommendations