Completely discrete schemes for the homogeneous equation

  • Vidar Thomée
Part of the Lecture Notes in Mathematics book series (LNM, volume 1054)


Rational Function Discretization Scheme Parabolic Problem Pade Approximant Positive Definite Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.A. Baker, J.H. Bramble and V. Thomée, Single step Galerkin approximations for parabolic problems. Math. Comput. 31, 818–847(1977).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Zlámal, Finite element multistep discretizations of parabolic boundary value problems. Math. Comput. 29, 350–359(1975).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M.-N. Le Roux, Semidiscretization in time for parabolic problems. Math. Comput. 33, 919–931(1979).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M.-N. Le Roux, Semi-discrétisation en temps pour les équations d’évolution paraboliques lorsque l’opérateur dépend du temps. RAIRO, Anal. Numér. 13, 119–137(1979).zbMATHGoogle Scholar
  5. 5.
    P. Sammon, Fully discrete approximation methods for parabolic problems with non-smooth initial data. SIAM J. Numer. Anal. 20, 437–470(1983).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J.H. Bramble and P.H. Sammon, Efficient higher order single step methods for parabolic problems: Part I. Math. Comput. 35, 655–677(1980).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Vidar Thomée

There are no affiliations available

Personalised recommendations