Advertisement

Two theorems of G. Gherardelli on curves simple intersection of three surfaces

  • Mario Fiorentini
  • Alexandru T. Lascu
Conference paper
  • 235 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1056)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. FIORENTINI & A.T. LASCU, Una formula di geometria numerativa, Annali dell'Università di Ferrara, 27 (1981), pp. 201–227.MathSciNetzbMATHGoogle Scholar
  2. [2]
    G. GHERARDELLI, Sulle curve sghembe algebriche intersezioni semplici complete di tre superficie, Reale Accademia d'Italia, Classe di Scienze fisiche, matematiche e naturali, 4 (1943), pp. 460–462.MathSciNetzbMATHGoogle Scholar
  3. [3]
    C. PESKINE, L. SZPIRO, Liaison des variétés algébriques, Inventiones Math., 26 (1974), pp. 271–302.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. RAO, Liaison among curves in P 3. Invent. Math., 50 (1979), pp. 205–217.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    F. SEVERI, Über die Darstellung algebraischer Mannigfaltigkeiten als Durchschnitte von Formen, Abhand. Math. Sem. Hansischen Univ., 15 (1943), pp. 97–119.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    F. SEVERI, Serie, sistemi d'equivalenza e corrispondenze algebriche sulle varietà algebriche, Ed. Cremonese, Roma, 1942.zbMATHGoogle Scholar
  7. [7]
    M. FIORENTINI & A.T. LASCU, A Criterion for Quasi-Complete Intersections and Related Embedding Questions, Annali Univ.Ferrara Sez. VII, Sc. Mat. Vol. XXVIII, 153–166 (1982).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Mario Fiorentini
    • 1
  • Alexandru T. Lascu
    • 2
  1. 1.Ist. MatematicoUniv. di FerraraFrance
  2. 2.Département de MathématiquesUniversité de MontréalFrance

Personalised recommendations