Advertisement

Topologically trivial algebraic 2-vector bundles on ruled surfaces. II

  • Vasile Brinzanescu
  • Manuela Stoia
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1056)

Keywords

Exact Sequence Complete Intersection Isomorphism Class Free Sheaf Invertible Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BĂnicĂ C.: Topologisch triviale holomorphe Vektorbündel auf Pn, Preprint INCREST, (1982 J. reine angew. Math. 344 (1983) 102–119.MathSciNetzbMATHGoogle Scholar
  2. [2]
    BĂnicĂ C., Putinar M., Schumacher G.: Variation der globalen Ext in Deformationen kompakter komplexer Raume, Math.Ann.250 (1980).Google Scholar
  3. [3]
    BrînzĂnescu V., Stoia M.: Topologically trivial algebraic 2-vector bundles on ruled surfaces I, Preprint INCREST (1981); (to appear in Rev.Roum.Math.pures et appl.).Google Scholar
  4. [4]
    Ellingsrud G., Strømme S.A.: On the moduli space for stable rank-2 vector bundles on P2. Preprint, Oslo (1979).Google Scholar
  5. [5]
    Fogarty J.: Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968).Google Scholar
  6. [6]
    Grothendieck A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer.J.Math. 79 (1956).Google Scholar
  7. [7]
    Hartshorne R.: Algebraic Geometry, Springer 1977.Google Scholar
  8. [8]
    Hoppe H.R., Spindler H.: Modulräume stabiler 2-Bündel auf Regelflächen. Math.Ann.249, (1980).Google Scholar
  9. [9]
    Okonek Ch., Schneider M., Spindler H.: Vector bundles on complex projective spaces. Progress in Math.3, Birkhäuser, 1980.Google Scholar
  10. [10]
    Schafft U.: Dissertation, Göttingen (1981), J. reine angew. Math. 338 (1983).Google Scholar
  11. [11]
    Schwarzenberger R.L.E.: Vector bundles on algebraic surfaces. Proc. London Math.Soc.11, (1961).Google Scholar
  12. [12]
    Strømme S.A.: Deforming vector bundles on the projective plane. Preprint, Oslo (1982).Google Scholar
  13. [13]
    Wu Wen-tsien: Sur les espaces fibrés. Publ.Inst.Univ.Strassbourg XI, Paris (1952).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Vasile Brinzanescu
    • 1
  • Manuela Stoia
    • 2
  1. 1.Department of MathematicsPolytechnical Institute BucharestRomania
  2. 2.Institute of MathematicsBucharestRomania

Personalised recommendations