The role of basic cases in classification: Theorems about unitary representations applicable to SU(N,2)

  • A. W. Knapp
  • B. Speh
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1020)


Basic Case Unitary Representation Parabolic Subgroup Discrete Series Irreducible Unitary Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. W. Baldoni Silva, The unitary dual of Sp(n,1), n>2, Duke Math. J. 48 (1981), 549–583.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. W. Baldoni Silva and D. Barbasch, The unitary spectrum for real rank one groups, preprint, 1982.Google Scholar
  3. [3]
    M. Duflo, Représentations unitaires irréductibles des groupes simples complexes de rang deux, Bull. Soc. Math. France 107 (1979), 55–96.MathSciNetzbMATHGoogle Scholar
  4. [4]
    T. J. Enright, R. Howe, and N. R. Wallach, Unitarizable highest weight representations, Proceedings of conference at University of Utah 1982, to appear.Google Scholar
  5. [5]
    A. Guillemonat, Sur l'unitarisation des modules spheriques: une extension de la bande critique, preprint, Université d'Aix-Marseille II, 1980.Google Scholar
  6. [6]
    H. P. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules, preprint, 1981.Google Scholar
  7. [7]
    A. U. Klimyk and A. M. Gavrilik, The representations of the groups U(n,1) and SO(n,1), preprint ITP-76-39E, Institute for Theoretical Physics, Kiev, USSR, 1976.zbMATHGoogle Scholar
  8. [8]
    A. W. Knapp, Investigations of unitary representations of semisimple Lie groups, Topics in Modern Harmonic Analysis, Istituto di Alta Matematica, to appear.Google Scholar
  9. [9]
    A. W. Knapp, Minimal K-type formula, this volume.Google Scholar
  10. [10]
    A. W. Knapp and B. Speh, Irreducible unitary representations of SU(2,2), J. Func. Anal. 45 (1982), 41–73.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. W. Knapp and B. Speh, Status of classification of irreducible unitary representations, "Harmonic Analysis Proceedings, Minneapolis 1981," Springer-Verlag Lecture Notes in Math. 908 (1982), 1–38.Google Scholar
  12. [12]
    A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. 93 (1971), 489–578.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. 116 (1982).Google Scholar
  14. [14]
    H. Schlichtkrull, The Langlands parameters of Flensted-Jensen's discrete series for semisimple symmetric spaces, preprint, 1981.Google Scholar
  15. [15]
    B. Speh and D. A. Vogan, Reducibility of generalized principal series representations, Acta Math. 145 (1980), 227–299.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. A. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Inventiones Math. 48 (1978), 75–98.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. A. Vogan, The algebraic structure of the representation of semisimple Lie groups I, Ann. of Math. 109 (1979), 1–60.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. A. Vogan, "Representations of Real Reductive Groups," Birkhäuser, Boston, 1981.zbMATHGoogle Scholar
  19. [19]
    G. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. 106 (1977), 295–308.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. W. Knapp
    • 1
  • B. Speh
    • 1
  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations