Advertisement

Minimal K-type formula

  • A. W. Knapp
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1020)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Models of representations of compact Lie groups, Func. Anal. and Its Appl. 9 (1975), 322–324.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Harish-Chandra, Representations of semisimple Lie groups V, Proc. Nat. Acad. Sci. USA 40 (1954), 1076–1077.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. Hecht and W. Schmid, A proof of Blattner's conjecture, Inventiones Math. 31 (1975), 129–154.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. W. Knapp and B. Speh, The role of basic cases in classification: theorems about unitary representations applicable to SU(N, 2), this volume.Google Scholar
  5. [5]
    A. W. Knapp and G. Zuckerman, Classification theorems for representations of semisimple Lie groups, "Non-Commutative Harmonic Analysis," Springer-Verlag Lecture Notes in Math. 587 (1977), 138–159.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. 116 (1982).Google Scholar
  7. [7]
    R. P. Langlands, On the classification of irreducible representations of real algebraic groups, mimeographed notes, Institute for Advanced Study, 1973.Google Scholar
  8. [8]
    W. Schmid, On the characters of the discrete series, Inventiones Math. 30 (1975), 47–144.CrossRefzbMATHGoogle Scholar
  9. [9]
    D. A. Vogan, The algebraic structure of the representation of semisimple Lie groups I, Ann. of Math. 109 (1979), 1–60.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. A. Vogan, Fine K-types and the principal series, mimeographed notes, Massachusetts Institute of Technology, 1977.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. W. Knapp
    • 1
  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations