Minimal K-type formula

  • A. W. Knapp
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1020)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Models of representations of compact Lie groups, Func. Anal. and Its Appl. 9 (1975), 322–324.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Harish-Chandra, Representations of semisimple Lie groups V, Proc. Nat. Acad. Sci. USA 40 (1954), 1076–1077.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. Hecht and W. Schmid, A proof of Blattner's conjecture, Inventiones Math. 31 (1975), 129–154.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. W. Knapp and B. Speh, The role of basic cases in classification: theorems about unitary representations applicable to SU(N, 2), this volume.Google Scholar
  5. [5]
    A. W. Knapp and G. Zuckerman, Classification theorems for representations of semisimple Lie groups, "Non-Commutative Harmonic Analysis," Springer-Verlag Lecture Notes in Math. 587 (1977), 138–159.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. 116 (1982).Google Scholar
  7. [7]
    R. P. Langlands, On the classification of irreducible representations of real algebraic groups, mimeographed notes, Institute for Advanced Study, 1973.Google Scholar
  8. [8]
    W. Schmid, On the characters of the discrete series, Inventiones Math. 30 (1975), 47–144.CrossRefzbMATHGoogle Scholar
  9. [9]
    D. A. Vogan, The algebraic structure of the representation of semisimple Lie groups I, Ann. of Math. 109 (1979), 1–60.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. A. Vogan, Fine K-types and the principal series, mimeographed notes, Massachusetts Institute of Technology, 1977.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. W. Knapp
    • 1
  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations