Advertisement

Relations between the Poincaré-Betti series of loop spaces and of local rings

  • Jan-Erik Roos
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 740)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. (1).
    E.F. ASSMUS, Jr, On the homology of local rings, Ill. J. Math., 3, 1959, p. 187–199.MathSciNetMATHGoogle Scholar
  2. (2).
    J. BACKELIN, On the rationality of some "Hilbert series" I, Preprint Series, Department of Mathematics, University of Stockholm, No. 6, 1975.Google Scholar
  3. (3).
    J.BACKELIN, A distributiveness property of augmented algebras and some related homological results. (Thesis (to appear)).Google Scholar
  4. (4).
    J. BACKELIN, La série de Poincaré-Betti d'un algèbre de type fini à une relation est rationnelle, Comptes Rendus Acad. Sc., 287, série A, 1978, p.Google Scholar
  5. (5).
    H. CARTAN-S. EILENBERG, Homological Algebra, Princeton University Press, Princeton, 1956.MATHGoogle Scholar
  6. (6).
    H. CARTAN, Homologie et cohomologie d'une algèbre graduée, Exposé 15 in Séminaire Henri Cartan, 11e année, 1958–59. (Has also been published by Benjamin, New York, 19.).Google Scholar
  7. (7).
    P.M. COHN, Free associative algebras, Bull. London Math. Soc., 1, 1969, p. 1–39.MathSciNetCrossRefMATHGoogle Scholar
  8. (8).
    R. FRÖBERG, Determination of a class of Poincaré series, Math. Scand., 37, 1975, p. 29–39.MathSciNetMATHGoogle Scholar
  9. (9).
    R. FRÖBERG, Determination of a class of Poincaré series II, Preprint Series, Department of Mathematics, University of Stockholm, No. 13, 1976 and these Proceedings.Google Scholar
  10. (10).
    V.E. GOVOROV, O graduirovannych algebrach, Matem. Zametki, 12, 1972, p. 197–204. English translation: Graded algebras, Math. Notes of the Academy of Sciences of the USSR, 12, 1972, p. 552–556.MathSciNetGoogle Scholar
  11. (11).
    V.E. GOVOROV, O razmernosti graduirovannych algebr, Matem. Zametki, 14, 1973, p. 209–216. English translation: On the dimension of graded algebras, Math. Notes of the Academy of Sciences of the USSR, 14, 1973, p. 678–682.MathSciNetGoogle Scholar
  12. (12).
    V.E. GOVOROV, O global'noj razmernosti algebr, Matem. Zametki, 14, 1973, p. 399–406. English translation: On the global dimension of an algebra, Math. Notes of the Academy of Sciences of the USSR, 14, 1973, p. 789–792.MathSciNetGoogle Scholar
  13. (13).
    V.E. GOVOROV, Razmernost' i kratnost' graduirovannych algebr, Sibir. Matem. Zurnal, 14, 1973, p. 1200–1206. English translation: Dimension and multiplicity of graded algebras, Siberian Math. J., 14, 1973, p. 840–845.MathSciNetGoogle Scholar
  14. (14).
    T.H. GULLIKSEN-G. LEVIN, Homology of local rings, Queen's Papers in Pure and Appl. Mathematics, No. 20, Queen's University, Kingston, Ontario, 1969.MATHGoogle Scholar
  15. (15).
    S. HALPERIN-J. STASHEFF, Obstructions to Homotopy Equivalences (to appear in Advances in Mathematics).Google Scholar
  16. [16]
    P.J. HILTON, On the homotopy groups of the union of spheres, J. London Math. Soc., 30, 1955, p. 154–171.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    P.J. HILTON-D. REES, Natural maps of extension functors and a theorem of R.G. Swan, Proc. Cambr. Philos. Soc., 57, 1961, p. 489–502.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    A.I. KOSTRIKIN-I.R. ŠAFAREVIČ, Gruppy gomologij nil'potentnych algebr, Doklady Akad. Nauk SSSR, 115, 1957, p. 1066–1069.Google Scholar
  19. [19]
    J.M. LEMAIRE, A finite complex whose rational homotopy is not finitely generated, Lecture Notes in Mathematics, 196, p. 114–120, Springer-Verlag, Berlin, 1971.MATHGoogle Scholar
  20. [20]
    J.M. LEMAIRE, Algèbres Connexes et Homologie des Espaces de Lacets, Lecture Notes in Mathematics, 422, Springer-Verlag, Berlin, 1974.MATHGoogle Scholar
  21. [21]
    G. LEVIN, Two conjectures in the homology of local rings, J. Algebra, 30, 1974, p. 56–74.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    G. LEVIN, Local rings and Golod homomorphisms, J. Algebra, 37, 1975, p. 266–289.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    G. LEVIN, Lectures on Golod homomorphisms, Preprint Series, Department of Mathematics, University of Stockholm, No. 15, 1976.Google Scholar
  24. [24]
    C. LÖFWALL, On the Poincaré series for a class of local rings, Preprint Series, Department of Mathematics, University of Stockholm, No. 8, 1975.Google Scholar
  25. [25]
    C. LÖFWALL, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Preprint Series, Department of Mathematics, University of Stockholm, No. 5, 1976.Google Scholar
  26. [26]
    S. MACLANE, Homology, Springer-Verlag, Berlin, 1963.CrossRefMATHGoogle Scholar
  27. [27]
    J. MILNOR-J.C. MOORE, On the structure of Hopf algebras, Ann. Math., 81, 1965, p. 211–264.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J.-E ROOS, Sur l'algèbre Ext de Yoneda d'un anneau local de Golod, Comptes Rendus Acad. Sc., 286, série A, 1978, p.9–12.MATHGoogle Scholar
  29. [29]
    J.P. SERRE, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, 11, 3e édition, Springer-Verlag, Berlin, 1975.MATHGoogle Scholar
  30. [30]
    G. SJÖDIN, A set of generators for ExtR(k,k), Math. Scand., 38, 1976, p.1–12.Google Scholar
  31. [31]
    G. SJÖDIN, A characterization of local complete intersections in terms of the Ext-algebra, Preprint Series, Department of Mathematics, University of Stockholm, No. 2, 1976.Google Scholar
  32. [32]
    L. SMITH, Homological Algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc., 129, 1967, p. 58–93.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    L. SMITH, Lectures on the Eilenberg-Moore spectral sequence, Lecture Notes in Mathematics, 134, Springer-Verlag, Berlin, 1970.MATHGoogle Scholar
  34. [34]
    L. SMITH, On the Eilenberg-Moore spectral sequence, Proc. Symposia in Pure Mathematics, Amer. Math. Soc., 22, 1971, p. 231–246.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    J. TATE, Homology of noetherian rings and local rings, Ill. J. Math., 1, 1957, p. 14–27.MathSciNetMATHGoogle Scholar

Supplementary Bibliography

  1. [36]
    C. LÖFWALL, Une algèbre nilpotente dont la série de Poincaré-Betti est non rationnelle. Submitted to the "Comptes rendus de l'Acad. Sc. Paris".Google Scholar
  2. [37]
    R. RUCHTI, On formal spaces and their loop space, Ill. J. Math., 22, 1978, p. 96–107.MathSciNetMATHGoogle Scholar
  3. [38]
    J.-P. SERRE, Un exemple de série de Poincaré non rationnelle. To appear in Proc. Nederl. Acad.Google Scholar
  4. [39]
    J.B. SHEARER, A graded algebra with a non-rational Hilbert series. Preprint from Math. Department, M.I.T., Cambridge, Mass., 02139, USA, 1978.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jan-Erik Roos
    • 1
  1. 1.Department of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations