Sur la conjecture de birch-swinnerton dyer [d’après J. Coates et A. Wiles]

  • erge Lang
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 677)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ar]
    N. ARTHAUD-On Birch and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication, à paraître.Google Scholar
  2. [C-W 1]
    J. COATES and A. WILES-On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 1977.Google Scholar
  3. [C-W 2]
    J. COATES and A. WILES-Hurwitz numbers and Iwasawa modules, Proc. Int. Conference on Algebraic Number Theory, Kyoto, 1976.Google Scholar
  4. [C-W 3]
    J. COATES and A. WILES-Kummer’s criterion for Hurwitz numbers Google Scholar
  5. [C-W 4]
    J. COATES and A. WILES-Explicit reciprocity laws Google Scholar
  6. [Da]
    R. DAMERELL-L-functions of elliptic curves with complex multiplication, Acta Arith., 17(1970), 287–301.MathSciNetzbMATHGoogle Scholar
  7. [Iw]
    K. IWASAWA-On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16(1964), 42–82.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [KL]
    D. KUBERT and S. LANG-Units in the modular function field, survey talk, Modular Functions in one variable, Bonn Conference, 1976.Google Scholar
  9. [L]
    S. LANG-Elliptic functions, Addison Wesley, 1973.Google Scholar
  10. [Ro 1]
    G. ROBERT-Unités elliptiques, Bull. Math. Soc. France, Mémoire 36 (1973).Google Scholar
  11. [Ro 2]
    G. ROBERT-Nombres de Hurwitz et unités elliptiques, à paraître.Google Scholar

Copyright information

© N. Bourbaki 1978

Authors and Affiliations

  • erge Lang

There are no affiliations available

Personalised recommendations