Advertisement

Spectre de l’équation de schrödinger, application a la stabilité de la matière [d’après J. Lebowitz, E. Lieb, B. Simon et W. Thirring]

  • Pierre Cartier
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 677)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Th. AUBIN-Problèmes isopérimétriques et espaces de Sobolev, C.R. Acad. Sci. Paris, 280(1975), p. 279–281.Google Scholar
  2. [2]
    Th. AUBIN-Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math., 100(1976), p. 149–173.MathSciNetMATHGoogle Scholar
  3. [3]
    Th. AUBIN-Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, Journ. Math. Pures et Appl., 55(1976), p. 269–296.MathSciNetMATHGoogle Scholar
  4. [4]
    J.F. BARNES, H.J. BRASCAMP et E.H. LIEB-Lower bound for the ground state energy at the Schrödinger equation using the sharp form of Young’s inequality, dans [15], pages 83 à 90.Google Scholar
  5. [5]
    M.S. BIRMAN-Mat. Sbornik, 55(1961), p. 125–174 [Traduction anglaise: The spectrum of singular boundary value problems, Amer. Math. Soc. Translations, Series 2, 53(1966), p. 23–80.]MathSciNetGoogle Scholar
  6. [6]
    G.A. BLISS-An integral inequality, Journ. London Math. Soc., 5(1930), p. 40–46.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    R. COURANT et D. HILBERT-Methods of mathematical Physics, volume 1, Interscience, 1953.Google Scholar
  8. [8]
    F.J. DYSON et A. LENARD-Stability of matter I: Journ. Math. Phys., 8(1967), p. 423–434, et II: ibid., 9(1968), p. 698–711.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    G.H. HARDY, J.E. LITTLEWOOD et G. POLYA-Inequalities, Cambridge University Press, deuxième édition, 1952.Google Scholar
  10. [10]
    V. GLASER, A. MARTIN, H. GROSSE et W.E. THIRRING-A family of optimal conditions for the absence of bound states in a potential, dans [15], pages 169 à 194.Google Scholar
  11. [11]
    T. KATO-Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Amer. Math. Soc., 70(1951), p. 195–211.MathSciNetMATHGoogle Scholar
  12. [12]
    E.H. LIEB-The stability of matter, Reviews of Modern Physics, 48(1976), p. 555–569.MathSciNetCrossRefGoogle Scholar
  13. [13]
    E.H. LIEB et J.L. LEBOWITZ-The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. Math., 9(1972), p. 316–398.MathSciNetCrossRefGoogle Scholar
  14. [14]
    E.H. LIEB et W.E. THIRRING-Inequalities for the moments of eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, dans [15], pages 169 à 194.Google Scholar
  15. [15]
    E.H. LIEB, B. SIMON et A.S. WIGHTMAN (éditeurs)-Studies in Mathematical Physics (Essays in honor of Valentine Bargmann), Princeton University Press, 1976.Google Scholar
  16. [16]
    J. MILNOR-Morse theory, Annals of Math. Studies, vol. 51, Princeton University Press, 1963.Google Scholar
  17. [17]
    G.D. MOSTOW-Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S., 34(1968), p. 53–104.MathSciNetMATHGoogle Scholar
  18. [18]
    G. ROSEN-Minimum value for c in the Sobolev inequality ‖Φ3‖ ≤ c ‖∇Φ‖3, S.I.A.M. Journ. Appl. Math., 21(1971), p. 30–32.MATHCrossRefGoogle Scholar
  19. [19]
    J. SCHWINGER-On the bound states of a given potential, Proc. Nat. Acad. Sci. U.S.A., 47(1961), p. 122–129.MathSciNetCrossRefGoogle Scholar
  20. [20]
    B. SIMON-On the number of bound states of two-body Schrödinger operators-a review, dans [15], paper 305 à 326.Google Scholar
  21. [21]
    B. SIMON-Quantum mechanics for hamiltonians defined by quadratic forms, Princeton University Press, 1971.Google Scholar
  22. [22]
    S. SOBOLEV-Sur un théorème d’Analyse Fonctionnelle, Mat. Sbornik, 46(1938), p. 471–496.Google Scholar
  23. [23]
    S. SOBOLEV-Sur les équations aux dérivées partielles hyperboliques non-linéaires, Edizioni Cremonese, Roma, 1961.Google Scholar
  24. [24]
    E. STEIN-Singular integrals and differentiability properties of functions, Princeton University Press, 1970.Google Scholar

Copyright information

© N. Bourbaki 1978

Authors and Affiliations

  • Pierre Cartier

There are no affiliations available

Personalised recommendations