Faisceaux amples et très amples [d’après T. Matsusaka]

  • Michel Raynaud
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 677)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. BOMBIERI-Canonical models of surface of general type, Publ. I.H.E.S., 42(1973), p. 171–220.MathSciNetGoogle Scholar
  2. [2]
    K. KODAIRA-Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan, 20(1968), p. 170–192.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    D. LIEBERMAN and D. MUMFORD-Matsusaka’s big theorem, Proc. of the AMS Summer Institute 1974, ArcataGoogle Scholar
  4. [4]
    T. MATSUSAKA-On canonically polarized varieties II, Amer. Journ. Math., 92(1970), p. 283–292.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    T. MATSUSAKA-Polarized varieties with a given Hilbert polynomial, Amer. Journ. Math., 94(1972), p. 1027–1077.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    T. MATSUSAKA and D. MUMFORD-Two fundamental theorems on deformations of polarized varieties, Amer. Journ. Math., 86(1964), p. 668–683.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    A. MAYER-Families of K3 surfaces, Nagoya Math. Journ., 48(1972), p. 1–17Google Scholar
  8. [8]
    M. RAYNAUD-Faisceaux amples sur les schémas en groupes, Lecture Notes in Math., no 119, Springer, 1970.Google Scholar
  9. [9]
    B. SAINT-DONAT-Projective models of K-3 surfaces, ThèseGoogle Scholar
  10. [10]
    A. WELL-Variétés kählériennes, Paris, Hermann, 1958.Google Scholar

Copyright information

© N. Bourbaki 1978

Authors and Affiliations

  • Michel Raynaud

There are no affiliations available

Personalised recommendations