Skip to main content

Stochastic solutions of hyperbolic equations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 446))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BIRKHOFF, G. and LYNCH, R.E., Numerical solution of the telegraph and related equations, in Numerical Solutions of Partial Differential Equations, Proc. Symp. Univ. Md., 1965; New York, Academic Press, 1966.

    Google Scholar 

  2. BOBISUD, L. and HERSH, R., Perturbation and approximation theory for higher-order abstract Cauchy problems, Rocky Mt. J. of Math. 2 (1972), 57–73.

    Article  MathSciNet  MATH  Google Scholar 

  3. CHABROWSKI, J., Les solutions non negatives d'un systeme parabolique d'equations, Ann. Polon. Math. 19 (1967), 193–197.

    MathSciNet  MATH  Google Scholar 

  4. COGBURN, R. and HERSH, R., Two limit theorems for random differential equations, Indiana Univ. Math. J. 22 (1973), 1067–1089.

    Article  MathSciNet  MATH  Google Scholar 

  5. ELLIS, R. S., and PINSKY, M. A., Limit theorems for model Boltzmann equations with several conserved quantities, preprint.

    Google Scholar 

  6. GOLDSTEIN, S., On diffusion by discontinuous movements and on the telegraph equation, Quart. J. Mech. Appl. Math. 4 (1951), 129–156.

    Article  MathSciNet  MATH  Google Scholar 

  7. GRIEGO, R. J., and HERSH, R., Random evolutions, Markov chains, and systems of partial differential equations, Proc. of National Academy of Sciences 62 (1969), 305–308.

    Article  MathSciNet  MATH  Google Scholar 

  8. GRIEGO, R. J., and HERSH, R., Theory of random evolutions with applications to partial differential equations, Trans. Amer. Math. Soc. 156 (1971), 405–418.

    Article  MathSciNet  MATH  Google Scholar 

  9. HEATH, D. C., Probabilistic Analysis of Hyperbolic Systems of Partial Differential Equations, Doctoral dissertation, University of Illinois, 1969.

    Google Scholar 

  10. HERSH, R., Random evolutions: a survey of results and problems, Rocky Mt. J. of Math., Summer 1974.

    Google Scholar 

  11. HERSH, R., The method of transmutations, this volume.

    Google Scholar 

  12. HERSH, R., and PAPANICOLAOU, G., Non-commuting random evolutions, and an operator-valued Feynman-Kac formula, Comm. Pure and Appl. Math. 25 (1972), 337–367.

    Article  MathSciNet  MATH  Google Scholar 

  13. HERSH, R. and PINSKY, M., Random evolutions are asymptotically Gaussian, Comm. Pure and Appl. Math., 25 (1972), 33–44.

    Article  MathSciNet  MATH  Google Scholar 

  14. KAC, M., A stochastic model related to the telegrapher's equation, Magnolia Petroleum Co. Colloquium Lectures, 2 (1956); reprinted in Rocky Mt. J. of Math., Summer 1974.

    Google Scholar 

  15. KAPLAN, S., Differential equations in which the Poisson process plays a role, Bull. Amer. Math. Soc. 70 (1964), 264–268.

    Article  MathSciNet  MATH  Google Scholar 

  16. KEEPLER, M., Backward and Forward Equations for Random Evolutions, Doctoral dissertation, University of New Mexico, 1973.

    Google Scholar 

  17. KELLER, J. and LARSEN, E., Asymptotic solution of neutron transport problems for small mean free paths, J. Math. Phys. 15 (1974), 75–81.

    Article  MathSciNet  Google Scholar 

  18. KERTZ, R., Limit Theorems for Discontinuous Random Evolutions, Doctoral dissertation, Northwestern University, 1972.

    Google Scholar 

  19. KURTZ, T. G., A limit theorem for perturbed operator semigroups with applications to random evolutions, J. Func. Anal. 12 (1973), 55–67.

    Article  MathSciNet  MATH  Google Scholar 

  20. PAPANICOLAOU, G. C. and VARADHAN, S. R. S., A limit theorem with strong mixing in Banach space and two applications to stochastic differential equations, Comm. Pure and Appl. Math. 26 (1973), 497–523.

    Article  MathSciNet  MATH  Google Scholar 

  21. PINSKY, M., Multiplicative operator functionals of a Markov process, Bull. Amer. Math. Soc. 77 (1971), 377–380.

    Article  MathSciNet  MATH  Google Scholar 

  22. PINSKY, M., Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain, Z. Wahrscheinlichkeitstheorie verw. Geb. 9 (1968), 101–111.

    Article  MathSciNet  MATH  Google Scholar 

  23. PINSKY, M., Multiplicative operator functionals and their asymptotic properties, Advances in Probability, Vol. 3, Marcel Dekker, New York, 1974, 1–100.

    Google Scholar 

  24. SCHOENE, A., Semi-groups and a class of singular perturbation problems, Indiana U. Math. J. 20 (1970), 247–263.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerome A. Goldstein

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag

About this paper

Cite this paper

Hersh, R. (1975). Stochastic solutions of hyperbolic equations. In: Goldstein, J.A. (eds) Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, vol 446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0070607

Download citation

  • DOI: https://doi.org/10.1007/BFb0070607

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07148-8

  • Online ISBN: 978-3-540-37440-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics