Skip to main content

Graphs and their degree sequences: A survey

  • Conference paper
  • First Online:
Theory and Applications of Graphs

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 642))

Abstract

Some recent work on the relationship between an integer sequence and various graph theoretic properties which a realization of the sequence may or must possess is surveyed.

This work is supported by the Air Force Office of Scientific Research, Air Force Systems Command, under Grant AFOSR 71-2103 (D).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Alpert and J. L. Gross, Graph embedding problems, Amer Math. Monthly 82 (1975), 835–837.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  3. L. W. Beineke and E. F. Schmeichel, On degrees and cycles in graphs, J. Networks (to appear).

    Google Scholar 

  4. F. T. Boesch, The strongest monotone degree condition for n-connectedness of a graph, J. Combinatorial Theory Ser. B. 16 (1974), 162–165.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. T. Boesch and F. Harary, Unicyclic realizability of a degree list, J. Networks (to appear).

    Google Scholar 

  6. J. A. Bondy, Properties of graphs with constraints on degrees, Studia Sci. Math. Hungar. 4 (1966), 473–475.

    MathSciNet  Google Scholar 

  7. J. A. Bondy, Pancyclic graphs I, J. Combinatorial Theory 11 (1971), 80–84.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. A. Bondy and V. Chvàtal, A method in graph theory (to appear).

    Google Scholar 

  9. R. Bowen, On the sums of valences in planar graphs, Can. Math. Bull. 9 (1966), 111–114.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Chartrand, S. F. Kapoor, and H. V. Kronk, A sufficient condition for n-connectedness of a graph, Mathematika 15 (1968), 51–52.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Chou and H. Frank, Survivable communication networks and terminal capacity matrix, IEEE Trans. Circuit Theory CT-17 (1970), 192–197.

    Article  MathSciNet  Google Scholar 

  12. V. Chvatal, Planarity of graphs with given degrees of vertices, Nieuw. Arch. Wisk. 17 (1969), 47–60.

    MathSciNet  MATH  Google Scholar 

  13. V. Chvátal, On Hamilton's ideals, J. Combinatorial Theory Ser. B. 12 (1972), 163–168.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Chvátal, New directions in Hamiltonian graph theory, in "New Directions in the Theory of Graphs" (Proceedings of the 1971 Ann Arbor Graph Theory Conference, F. Harary, ed.) Academic Press, New York, 1973.

    Google Scholar 

  15. C. R. J. Clapham and D. J. Kleitman, The degree sequences of self-complimentary graphs, J. Combinatorial Theory Ser. B. 20 (1976), 67–74.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Edmonds, Existence of k-edge connected ordinary graphs with prescribed degrees, J. of Research of the National Bureau of Standards, 68B (1964), 73–74.

    MathSciNet  Google Scholar 

  18. P. Erdös and T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), Mat. Lapok 11 (1960), 264–274.

    Google Scholar 

  19. E. Etourneau, Existence and connectivity of planar graphs having 12 vertices of degree 5 and n-12 vertices of degree 6, Infinite and Finite Sets, Colloq. Math. Soc. J. Bolyai, (A. Hajnal et al, ed.) North-Holland, 1975.

    Google Scholar 

  20. B. Grünbaum and T. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Can. J. Math. 15 (1963), 744–751.

    Article  MATH  Google Scholar 

  21. B. Grünbaum, Convex Polytopes, Wiley-Interscience, New York, 1967.

    MATH  Google Scholar 

  22. B. Grünbaum, Problem No. 2, Combinatorial Structures and Their Applications (Proceedings of the Calgony Conference, June, 1969, Richard Guy, ed.), Gordon and Breach, New York, 1971.

    Google Scholar 

  23. S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph, I, J. SIAM 10 (1962), 496–502.

    MathSciNet  MATH  Google Scholar 

  24. S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a linear graph, II, J. SIAM 11 (1963), 135–147.

    MathSciNet  MATH  Google Scholar 

  25. S. L. Hakimi, On the existence of graphs with prescribed degrees and connectivity, J. SIAM Appl. Math. 26 (1974), 154–164.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

    Google Scholar 

  27. V. Havel, A remark on the existence of finite graphs (Hungarian), Casopis Pest. Mat. 80 (1955), 477–480.

    MathSciNet  MATH  Google Scholar 

  28. A. Hawkins, A. Hill, J. Reeve, and J. Tyrell, On certain polyhedra, Math. Gazette 50 (1966), 140–144.

    Article  MATH  Google Scholar 

  29. D. J. Kleitman and D. L. Wang, Algorithms for constructing graphs and digraphs with given valences and factors, Discrete Math. 6 (1973), 79–88.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Kundu, The k-factor conjecture is true, Discrete Math. 6 (1973), 367–376.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. R. Lick, A sufficient condition for Hamiltonian connectedness, J. Combinatorial Theory 8 (1970), 444–445.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Lovász, Valencies of graphs with 1-factors, Periodica Math. Hungar. 5(2) (1974), 149–151.

    Article  MATH  Google Scholar 

  33. M. Meyniel, Une condition suffisante d'existence d'un circuit Hamiltonian dans un graphe oriente, J. Combinatorial Theory Ser. B 14 (1973), 137–147.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. St. J. A. Nash-Williams, Unexplored and semi-explored territories in graph theory, in "New Directions in the Theory of Graphs" (Proceedings of the 1971 Ann Arbor Graph Theory Conference, F. Harary, ed.) Academic Press, New York, 1973.

    Google Scholar 

  35. C. St. J. A. Nash-Williams, On Hamiltonian circuits in finite graphs, Proc. Amer. Math. Soc. 17 (1966), 466–467.

    Article  MathSciNet  MATH  Google Scholar 

  36. O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. B. Owens, On the planarity of regular incidence sequences, J. Combinatorial Theory 11 (1971), 201–212.

    MathSciNet  MATH  Google Scholar 

  38. A. Patrinos and S. L. Hakimi, Relations between graphs and integer-pair sequences, to appear in Discrete Mathematics.

    Google Scholar 

  39. L. Posa, A theorem concerning Hamilton lines, Magyar Tud. Akas. Mat. Kutáto Int. Közl 7 (1962), 225–226.

    MathSciNet  MATH  Google Scholar 

  40. S. B. Rao and A. R. Rao, Existence of triconnected graphs with prescribed degrees, Pacific J. Math. 33 (1970), 203–207.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. R. Rao and S. B. Rao, On factorable degree sequences, J. Combinatorial Theory Ser. B. 13 (1972), 185–191.

    Article  MathSciNet  Google Scholar 

  42. G. Ringel, Selbst Komplementäre Graphen, Arch. Math. 14 (1963), 354–358.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Ringel, Map Color Theorem, Springer-Verlag, New York, 1974.

    Book  MATH  Google Scholar 

  44. H. Sachs, Über Selbst Komplementäre Graphen, Publ. Math. Debrecen 9 (1962), 270–288.

    MathSciNet  Google Scholar 

  45. E. F. Schmeichel and S. L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvátal, J. Combinatorial Theory Ser. B. 17 (1974), 22–34.

    Article  MathSciNet  MATH  Google Scholar 

  46. E. F. Schmeichel and S. L. Hakimi, On planar graphical degree sequences, SIAM J. Applied Math. (to appear).

    Google Scholar 

  47. E. F. Schmeichel and S. L. Hakimi, On the existence of a traceable graph with prescribed vertex degrees (in preparation).

    Google Scholar 

  48. J. K. Senior, Partitions and their representative graphs, Amer. J. Math. 73 (1951), 663–689.

    Article  MathSciNet  MATH  Google Scholar 

  49. W. T. Tutte, A family of cubical graphs, Proc. of Comb. Phil. Soc. 43 (1947), 459–474.

    Article  MathSciNet  MATH  Google Scholar 

  50. D. L. Wang and D. J. Kleitman, On the existence of n-connected graphs with prescribed degrees (n≥2), Networks 3 (1973), 225–239.

    Article  MathSciNet  MATH  Google Scholar 

  51. D. L. Wang D. J. Kleitman, A note on n-edge-connectivity, unpublished note.

    Google Scholar 

  52. D. L. Wang, Construction of a maximally edge-connected graph with prescribed degrees, Stud. Appl. Math. 55(1) (1976), 87–92.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hakimi, S.L., Schmeichel, E.F. (1978). Graphs and their degree sequences: A survey. In: Alavi, Y., Lick, D.R. (eds) Theory and Applications of Graphs. Lecture Notes in Mathematics, vol 642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0070380

Download citation

  • DOI: https://doi.org/10.1007/BFb0070380

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08666-6

  • Online ISBN: 978-3-540-35912-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics