Odd cycles and perfect graphs

  • Don Greenwell
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 642)


A simple proof (using theorems of Hajnal and Tutte) of a characterization of odd cycles due to Melnikov and Vising is given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berge, C., Graphs and Hypergraphs, North Holland, (1973).Google Scholar
  2. 2.
    Hajnal, A., A theorem on k-saturated graphs, Canad. Math. J., 17(1965), 720–724.CrossRefGoogle Scholar
  3. 3.
    Lovász, L., A characterization of perfect graphs, J. Combinatorial Theory, 13(1972), 95–98.MATHCrossRefGoogle Scholar
  4. 4.
    Melnikov, L.S., V.G. Vising, Solution of Toft's problem, Diskret. Analiz., 19(1971), 11–14.Google Scholar
  5. 5.
    Toft, A., Combinatorial Theory and its Applications III, (P. Erdos, A. Renyi and Vera T. Sos, eds.) North Holland Publishing Company, 1970, 1193.Google Scholar
  6. 6.
    Tutte, W.T., The l-factors of oriented graphs, Proc. Amer. Math. Soc., 4(1953), 922–931.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Don Greenwell
    • 1
  1. 1.Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations