Skip to main content

Various length paths in graphs

  • Conference paper
  • First Online:
Theory and Applications of Graphs

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 642))

Abstract

A simple graph G on n vertices satisfies property Pi if between every pair of distinct vertices of G, there exists a path with i vertices. In this paper known results and open questions about the relationship between property Pi and property Pj are considered. There are degree conditions, edge conditions and the condition of being the power of a graph which guarantee that a graph is Hamiltonian-connected (satisfies property Pn). Included is a discussion of these conditions and their relationship to property Pi for i ≠ n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bondy, Properties of graphs with constrains on degrees. Studia. Sci. Math. Hungar. 4 (1969) 473–475.

    MathSciNet  MATH  Google Scholar 

  2. M.F. Capobianco, Statistical inference in finite populations having structure. Trans. New York Acad. Sci. Ser. II 32 (1970) 401–413.

    Article  MathSciNet  Google Scholar 

  3. G. Chartrand, A.M. Hobbs, H.A. Jung, S.F. Kapoor, and C. St. J. A. Nash-Williams, The square of a block is Hamiltonian connected. J. Comb. Theory Ser. B 16 (1974) 290–292.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Chvátal, On Hamilton's Ideals. J. Comb. Theory Ser. B 12 (1972) 163–168.

    Article  MATH  Google Scholar 

  5. V. Chvátal and P. Erdös, A note on Hamiltonian circuits. Discrete Math. 2 (1972) 111–113.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Theory of path length distributions I. Discrete Math. 6 (1973) 35–53.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.J. Faudree and R.H. Schelp, Path connected graphs. Acta Math. Acad. Scient. Hung. 25 (1974) 313–319.

    Article  MathSciNet  MATH  Google Scholar 

  8. ________, The square of a block is strongly path connected. J. of Comb. Theory Ser. B 20 (1976) 47–61.

    Article  MathSciNet  MATH  Google Scholar 

  9. ________, The entire graph of a bridgeless connected plane graph is panconnected. J. Lond. Math. Soc. (2) 12 (1975) 59–66.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Fleishner, On spanning subgraphs of a connected bridgeless graph and their application to DT-graphs. J. Comb. Theory Ser. B 16 (1974) 17–28.

    Article  Google Scholar 

  11. ____, The square of every two-connected graph is Hamiltonian. J. Comb. Theory Ser. B 16 (1974) 29–34.

    Article  Google Scholar 

  12. ____, In the square of graphs, Hamiltonianity and pancyclicity, Hamiltonian connected and panconnectedness are equivalent concepts. (To appear).

    Google Scholar 

  13. F. Harary, Graph Theory. Addison-Wesley, Reading (1969).

    Google Scholar 

  14. A.M. Hobbs and J. Mitchem, The entire graph of a bridgeless connected plane graph is Hamiltonian. (To appear).

    Google Scholar 

  15. J.J. Karaganis, On the cube of a graph. Canad. Math. Bull. 11 (1969) 295–296.

    Article  MathSciNet  Google Scholar 

  16. M. Lewin, On path-connected graphs. (To appear).

    Google Scholar 

  17. D.R. Lick, n-Hamiltonian connected graphs. Duke Math. J. 37 (1970) 387–392.

    Article  MathSciNet  MATH  Google Scholar 

  18. ____, A sufficient condition for Hamiltonian connectedness. J. Comb. Theory 8 (1970) 444–445.

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Ore, Note on Hamiltonian circuits. Amer. Math. Monthly 67 (1960) 55.

    Article  MathSciNet  MATH  Google Scholar 

  20. ____, Hamiltonian connected graphs. J. Math. Pures. Appl. 42 (1963) 21–27.

    MathSciNet  MATH  Google Scholar 

  21. L. Pósa, A theorem on Hamiltonian lines. Maggar Tud. Akad. Mat. Kutato Int. Kozl. 8 (1963) 355–361.

    Google Scholar 

  22. M. Sekanina, On an ordering of the set of vertices of a connected graph. Publ. Fac. Sci. Univ. Brno. 412 (1960) 137–142.

    MathSciNet  Google Scholar 

  23. J.E. Williamson, A note on Hamiltonian-connected graphs. (To appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faudree, R.J., Schelp, R.H. (1978). Various length paths in graphs. In: Alavi, Y., Lick, D.R. (eds) Theory and Applications of Graphs. Lecture Notes in Mathematics, vol 642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0070373

Download citation

  • DOI: https://doi.org/10.1007/BFb0070373

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08666-6

  • Online ISBN: 978-3-540-35912-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics