Advertisement

Domination of undirected graphs — A survey

  • E. J. Cockayne
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 642)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.MATHGoogle Scholar
  2. [2]
    E. J. Cockayne, B. L. Hartnell and S. T. Hedetniemi, An Algorithm for two Disjoint Matchings in a Tree (submitted).Google Scholar
  3. [3]
    E. J. Cockayne, S. Goodman and S. T. Hedetniemi, A Linear Algorithm for the Domination Number of a Tree, Information Processings Letters 4 (1975), 41–44.MATHCrossRefGoogle Scholar
  4. [4]
    E. J. Cockayne and S. T. Hedetniemi, Optimal Domination in Graphs, IEEE Trans. on Circuits and Systems, Vol. CAS-22 No. 11 (1975), 855–857.MathSciNetCrossRefGoogle Scholar
  5. [5]
    E. J. Cockayne and S. T. Hedetniemi, Disjoint Independent Dominating Sets in Graphs, Discrete Math (to appear).Google Scholar
  6. [6]
    E. J. Cockayne and S. T. Hedetniemi, Towards a theory of Domination in Graphs, Networks (to appear).Google Scholar
  7. [7]
    E. J. Cockayne and S. T. Hedetniemi, On Group Graphs with Disjoint Cliques (submitted).Google Scholar
  8. [8]
    E. J. Cockayne and S. T. Hedetniemi, Which Treeds do not have Disjoint Matchings, Utilitas Math (to appear).Google Scholar
  9. [9]
    E. J. Cockayne and S. T. Hedetniemi, Disjoint Cliques in Regular Graphs of degree seven or eight, J. Comb. Theory (to appear).Google Scholar
  10. [10]
    E. J. Cockayne and F. D. K. Roberts, Computation of Dominating Partitions (submitted).Google Scholar
  11. [11]
    F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.Google Scholar
  12. [12]
    F. Harary, S. T. Hedetniemi and G. Prins, An Interpolation Theorem for Graphical Homomorphisms, Portugal Math 26 (1967), 454–462.MathSciNetGoogle Scholar
  13. [13]
    B. L. Hartnell, Disjoint Matchings in Unicyclic Graphs, Utilitas Math (to appear).Google Scholar
  14. [14]
    F. Jaegar and C. Payan, Relations du type Nordhaus-Gaddum pour le Nombre d'absorption d'un graphe simple, C. R. Acad. Sc. Paris, Series A, t. 274, (1972), 728–730.Google Scholar
  15. [15]
    R. Karp, Reducibility Among combinatorial problems, Complexity of Computer Computations (R. E. Miller and J. W. Thatcher eds.), Plenum Press, New York (1972), 85–104.CrossRefGoogle Scholar
  16. [16]
    C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.MATHGoogle Scholar
  17. [17]
    J. Moon and A. Meir, Relations between packing and covering numbers of a tree, Pacific. J. Math Vol 61 No. 1 (1975), 225–233.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    J. Nieminen, Two bounds for the domination number of a graph, J. Inst. Maths. Applics 14 (1974), 183–187.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    E. A. Nordhaus and J. W. Gaddum, On Complementary Graphs, American Math. Monthly 63 (1956), 175–177.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    O. Ore, Theory of Graphs, American Math. Soc. Colloq. Publ. 38, Providence, R. I., 1962.Google Scholar
  21. [21]
    P. J. Slater, A constructive characterisation of trees having no k maximum matchings (submitted).Google Scholar
  22. [22]
    V. G. Vizing, A bound on the External Stability Number of a Graph, Doklady A. N. 164 (1965), 729–731.MathSciNetGoogle Scholar
  23. [23]
    V. G. Vizing, The Cartesian product of graphs, Vyč. Sis., 9, 1963, p 30–43.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • E. J. Cockayne
    • 1
  1. 1.University of VictoriaVictoriaCanada

Personalised recommendations