On some classes of Gibbsian random fields

  • M. B. Averintsev
Part II
Part of the Lecture Notes in Mathematics book series (LNM, volume 653)


Random Field Markov Random Field Invariant Potential Finite Dimensional Distribution Versus Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Averintsev M.B. The description of Markov random fields by Gibbs conditional distribution. Teor. Verojatnost. i Primen., 1972, 17, 1, 21–35.Google Scholar
  2. 2.
    Grimmet G.R. A theorem about random fields. Bull. London Math. Soc., 1973, 5, 1, 81–84.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Preston C.J. Generalized Gibbs states and Markov random fields. Advances in Appl. Probability, 1973, 5, 2, 242–261.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sullivan W.G. Finite range random fields and energy fields. J.Math. Anal. and Appl., 1973, 44, 3, 710–724.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sherman S. Markov random fields and Gibbs random fields. Israel J. Math., 1973, 14, 1, 92–103.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Suomela P. Factorings of finite dimensional distributions. Comment. Phys.-Math.Soc.Sci.Finn., 1972, 42, 3, 231–243.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Moussouris J. Gibbs and Markov random systems with constraints. J.Statist.Phys., 1974, 10, 1, 11–33.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Averintsev M.B. Gibbsian representation of random fields whose conditional probabilities may vanish. Problemy Peredaci Informacii, 1975, II, vyp.4, 86–96.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. B. Averintsev
    • 1
  1. 1.Moscow Institute of Railway EngineersRussia

Personalised recommendations