On non-uniqueness in some homogeneous networks

  • M. G. Shnirman
Part I
Part of the Lecture Notes in Mathematics book series (LNM, volume 653)


Local Interaction Great Probability Limit Behaviour Markov Operator Homogeneous Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stavskaya N.N., Pyatetsky-Shapiro I.I. (1968). On some properties of homogeneous networks of spontaneously active elements. Problemy Kibernet., 20, 91–106.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Vasilyev N.V., Mityushin L.G., Pyatetsky-Shapiro I.I., Toom A.L. (1973). Operators of Stavskaya. Inst.Appl.Math., Acad.Sci.USSR, Preprint no 12.Google Scholar
  3. 3.
    Shnirman M.G. (1968). On the ergodicity of a certain Markov chain. Problemy Kibernet., 20, 115–124.MathSciNetGoogle Scholar
  4. 4.
    Toom A.L. (1968). On a certain family of networks of formal neurons. Dokl.Acad.Nauk SSSR, 183, no I, 49–52.MathSciNetGoogle Scholar
  5. 5.
    Vasilyev N.B. (1970). Correlation equations for the stationary measure of a Markov chain. Theor. Veroyatnostli Primenen., 15, no 4, 536–541.MathSciNetGoogle Scholar
  6. 6.
    Vasershtein L.N. (1970). Leontovitch A.M. On the stationary measures of certain Markov operators describing a homogeneous random network. Problemy Peredači Informacii, 6, no L, 71–80.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. G. Shnirman
    • 1
  1. 1.Institute of Physics of Earth, USSR Academy of SciencesRussia

Personalised recommendations