Examples of actions on manifolds almost diffeomorphic to Vn+1,2

  • Michael Davis
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 298)


Orbit Space Ambient Manifold Homotopy Sphere Oriented Link Senior Thesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brieskorn, E., Beispiele zur differential topologie von singularitaten, Inventiones Math., 2 (1966), 1–14.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Browder, W. and T. Petrie, Semifree and quasi-free S1-actions on homotopy spheres, Essays on Topology and Related Topics Memoires dedies a Georges de Rham, Berlin-Heidelberg-New York, Springer-Verlag, 1970, pp. 136–146.CrossRefGoogle Scholar
  3. 3.
    Davis, M., Group actions on exotic Stiefel manifolds, senior thesis, Princeton, 1971.Google Scholar
  4. 4.
    DeSapio, R., Action of ϑ2k+1, Mich. Math. J., 14 (1967), 97–100.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Erle, D., Die quadratische form eines knotens und ein satz uber Knotenmannigfaltig-Keiten, J. Reine Angew. Math., 236 (1969), 174–218.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Haefliger, A., Differentiable imbeddings, Bull. Amer. Math. Soc., 67 (1961) 109–111.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hirzebruch, F., Singularities and exotic spheres, Seminaire Bourbaki, 19e annee, No. 314, (1966–67).Google Scholar
  8. 8.
    Hsiang, W. C. and W. Y. Hsiang, Differentiable actions of compact connected classical groups I, Amer. J. Math., 89 (1967), 705–786.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jänich, K., Differenzierbare mannigfaltigkeiten mit rand als orbitravme differenzierbarer G-mannigfaltigkeiten ahne rand, Topology, 5 (1966), 301–320.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kervaire, M. and J. Milnor, Groups of homotopy spheres I, Annals of Math., 77 (1963) 504–537.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kosinski, A., On the inertia group of π-manifolds, Amer. J. Math. 89 (1967), 227–248.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Milnor, J., Singular points on complex hypersurfaces, Annals of Math. Studies, No. 61, Princeton Univ. Press, 1969.Google Scholar
  13. 13.
    Schubert, H., Knoten und vollringe, Acta Math., 90 (1953), 131–286.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • Michael Davis
    • 1
    • 2
  1. 1.Yale UniversityUSA
  2. 2.Princeton UniversityUSA

Personalised recommendations