Cobordism of involutions revisited

  • J. M. Boardman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 298)


Vector Bundle Line Bundle Normal Bundle Laurent Series Polynomial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alexander, J.C., The bordism ring of manifolds with involution, to appear.Google Scholar
  2. [2]
    Boardman, J.M., On manifolds with involution, Bull. Amer. Math. Soc. 73(1967) 136–138.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Conner, P.E. and Floyd, E.E., Differentiable periodic maps, Ergebnisse der Mathematik 33, Springer-Verlag (Berlin 1964).Google Scholar
  4. [4]
    Liulevicius, A.L., A proof of Thom's theorem, Comment. Math. Helvet. 37(1962/1963)121–131.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Milnor, J.W., On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3(1965)223–230.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Milnor, J.W. and Moore, J.C., On the structure of Hopf algebras, Annals of Math. 81(1965)211–264.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Steenrod, N.E. and Epstein, D.B.A., Cohomology operations, Annals of Math. Study 50, Princeton U.P. (Princeton, 1962).Google Scholar
  8. [8]
    Thom, R. Quelques propriétés globales des variétés différentiables, Comment. Math. Helvet. 28(1954)17–86.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • J. M. Boardman
    • 1
  1. 1.The Johns Hopkins UniversityBaltimore

Personalised recommendations