Advertisement

Free and semi-free smooth actions of S1 and S3 on homotopy spheres

  • Kai Wang
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 298)

Keywords

Homotopy Class Orbit Space Isotopy Class Homotopy Sphere Differentiable Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Adams: Vector fields on spheres. Annals of Math. 75 (1966) 602–632.Google Scholar
  2. 2.
    J. F. Adams: On the group J(X) II. Topology 3 (1965) 137–171.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. F. Atiyah: Thom complexes. Proc. London Math. Soc. (3) 11 (1961) 291–310.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    W. Browder: Surgery and the theory of differentiable transformation groups in Proc. Conference on Transformation groups (New Orleans 1967) Springer 1968, 1–46.Google Scholar
  5. 5.
    G. Brumfield: Differentiable S1 actions on homotopy spheres. Preprint.Google Scholar
  6. 6.
    W. C. Hsiang: A note on free differentiable actions of S1 and S3 on homotopy spheres. Annals of Math. 83 (1966) 266–271.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    W. C. Hsiang & W. Y. Hsiang: Some free differentiable actions on 11-spheres. Quat. J. Math. (Oxford) 15 (1964) 371–374.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    G. R. Livesay & C. B. Thomas: Free Z2 and Z3 actions on homotopy spheres. Topology 7 (1968) 11–14.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    D. Montgomery & C. T. Yang: Differentiable actions on homotopy seven spheres (I). Trans. A. M. S. 122 (1966) 480–498.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    D. Montgomery & C. T. Yang: Differentiable actions on homotopy seven spheres (II), In "Proc. Conference on transformation groups (New Orleans 1967)" Springer 1968 125–134.Google Scholar
  11. 11.
    B. J. Sanderson: Immersions and embeddings of projective spaces. Proc. of London Math. Soc. 14(1964) 137–153.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    K. Wang: Free and semi-free actions of S1 and S3 on homotopy spheres. Preprint.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • Kai Wang
    • 1
  1. 1.University of ChicagoUSA

Personalised recommendations