Advertisement

Logique, catégories et faisceaux [d’après F. Lawvere et M. Tierney]

  • Pierre Cartier
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 710)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie Commentée

  1. [1]
    F.W. LAWVERE-An elementary theory of the category of sets, Proc. Nat. Acad. Sci. U.S.A., 52(1964), p. 1506–1511.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    An elementary theory of the category of sets, notes polycopiées, 43 pages, Université de Chicago, 1964.Google Scholar
  3. [3]
    Adjointness in foundations, Dialectica, 23(1969), p. 281–296.MATHGoogle Scholar
  4. [4]
    Equality in hyperdoctrines and comprehension schema as an adjoint functor, Symposia Pure Maths., vol. XVII, Amer. Math. Soc., 1970, p. 1–14.MathSciNetGoogle Scholar
  5. [5]
    Quantifiers and sheaves, Actes du Congrès Intern. des Math., Nice, 1970, vol. I, p. 329–334.Google Scholar
  6. [6]
    Continuously variable sets: algebraic geometry = geometric logic, in Bristol Logic Colloquium ’73, North Holland, 1975, p. 135–156.Google Scholar
  7. [7]
    Variable quantities and variable structures in topoi, in Algebra, Topology and Category Theory (éd. A. Heller et M. Tierney), Academic Press, 1976, p. 101–131.Google Scholar
  8. [8]
    Toposes, algebraic geometry and logic, Lecture Notes in Maths., vol.274, Springer, 1972.Google Scholar
  9. [9]
    Model theory and topoi, Lecture Notes in Maths., vol. 445, Springer, 1975.Google Scholar
  10. [10]
    A. CHURCH-The calculi of lambda conversion, Annals of Math. Studies, 6, Princeton University Press, 1941.Google Scholar
  11. [11]
    H. CURRY, R. FEYS et W. CRAIG-Combinatory Logic, vol. I, North Holland, 1958.Google Scholar
  12. [12]
    G. GENTZEN-Collected Papers (M. Szabo édit.), North Holland, 1969.Google Scholar
  13. [13]
    J. van HEIJENOORT-Frege and Gödel (Two fundamental texts in mathematical logic), Harvard University Press, 1970.Google Scholar
  14. [14]
    D. HILBERT et W. ACKERMANN-Grundzüge der theoretischen Logik, 5e édit., Springer, 1967.Google Scholar
  15. [15]
    S. KLEENE-Introduction to Metamathematics, van Nostrand, 1952.Google Scholar
  16. [16]
    Y. MANIN-A course in Mathematical Logic, Springer, 1977.Google Scholar
  17. [17]
    G. BIRKHOFF-Lattice theory, Colloquium Publ., vol. XXV, 3e édit., Amer. Math. Soc., 1967.Google Scholar
  18. [18]
    P. HALMOS-Lectures on Boolean algebras, van Nostrand, 1963.Google Scholar
  19. [19]
    A. HEYTING-Intuitionism. An introduction, North Holland, 1956.Google Scholar
  20. [20]
    J. McKINSEY et A. TARSKI-On closed elements in closure algebras, Ann. of Maths, 47(1946), p. 122–162.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    R. SIKORSKI-Boolean algebras, Springer, 1964.Google Scholar
  22. [22]
    H.RASIOWA et R. SIKORSKI-The mathematics of metamathematics, Monografie Mat. vol. 41, Varsovie, 1963.Google Scholar
  23. [23]
    M. ARTIN-Grothendieck topologies, notes polycopiées, Harvard, 1962.Google Scholar
  24. [24]
    M. ARTIN, A. GROTHENDIECK et J.L. VERDIER-Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Maths., vol. 269, Springer, 1972.Google Scholar
  25. [25]
    J. GIRAUD-Classifying topos, dans [8], p. 43–56.Google Scholar
  26. [26]
    Analysis Situs [d’après Artin et Grothendieck], Sém. Bourbaki 1962/3, exposé 256, 11 pages, Benjamin, 1966.Google Scholar
  27. [27]
    M. HAKIM-Topos annelés et schémas relatifs, Springer, 1972.Google Scholar
  28. [28]
    R. GODEMENT-Topologie algébrique et théorie des faisceaux, Hermann, 1958.Google Scholar
  29. [29]
    J. BÉNABOU et J. CELEYRETTE-Généralités sur les topos de Lawvere et Tierney, Sém. Bénabou, Université Paris-Nord, 1971.Google Scholar
  30. [30]
    P. FREYD-Aspects of topoi, Bull. Austr. Math. Soc., 7(1972), p. 1–76 et 467–480.MATHMathSciNetCrossRefGoogle Scholar
  31. [31]
    P. JOHNSTONE-Topos theory, London Math. Soc. vol. 10, Academic Press, 1977.Google Scholar
  32. [32]
    A. KOCK et C. MIKKELSEN-Topos theoretic factorization of non-standard analysis, Lecture Notes in Maths., vol. 369, Springer, 1974, p. 122–143.MATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    A. KOCK et G. WRAITH-Elementary toposes, Aarhus Lecture Notes, vol. 30, 1971.Google Scholar
  34. [34]
    M. TIERNEY-Axiomatic sheaf theory: some constructions and applications, in Categories and Commutative Algebra, C.I.M.E. III Ciclo 1971, Edizioni Cremonese, 1973, p. 249–326.Google Scholar
  35. [35]
    Forcing topologies and classifying topoi, in Algebra, Topology and Category Theory (éd. A. Heller et M. Tierney), Academic Press, 1976, p. 211–219.Google Scholar
  36. [36]
    J. BÉNABOU-Catégories et logiques faibles, Journées sur les Catégories, Oberwolfach, 1973.Google Scholar
  37. [37]
    M. COSTE-Logique d’ordre supérieur dans les topos élémentaires, Sém. Bénabou, Université Paris-Nord, 1973/4.Google Scholar
  38. [38]
    J. LAMBEK-Deductive systems and categories, I: Math. Systems Theory, 2(1968), p. 287–318; II: Lecture Notes in Maths., vol.86, Springer, 1969, p. 76–122; III: in [8], p. 57–82.MATHMathSciNetCrossRefGoogle Scholar
  39. [39]
    W. MITCHELL-Boolean topoi and the theory of sets, Journ. Pure and Applied Alg., 2(1972), p. 261–274.MATHCrossRefGoogle Scholar
  40. [40]
    G. OSIUS-Logical and set theoretical tools in elementary topoi, in [9], p. 297–346.Google Scholar
  41. [41]
    A note on Kripke-Joyal semantics for the internal language of topoi, in [9], p. 349–354.Google Scholar
  42. [42]
    H. VOLGER-Logical categories, semantical categories and topoi, in [9], p. 87–100.Google Scholar
  43. [43]
    P. BERNAYS et A. FRAENKEL-Axiomatic set theory, North Holland, 1968.Google Scholar
  44. [44]
    P. COHEN-Set theory and the continuum hypothesis, Benjamin, 1966.Google Scholar
  45. [45]
    K. GÖDEL-The consistency of the axiom of choice and the generalized continuum-hypothesis with the axioms of set theory, 4e édit., Princeton University Press, 1958.Google Scholar
  46. [46]
    R. JENSEN-Modelle der Mengenlehre, Lecture Notes in Maths., vol. 37, Springer, 1967.Google Scholar
  47. [47]
    A. MOSTOWSKI-An undecidable arithmetical statement, Fund. Math., 36(1949), p. 143–164.MATHMathSciNetGoogle Scholar
  48. [48]
    J. ROSSER-Simplified independence proofs (Boolean valued models of set theory), Academic Press, 1969.Google Scholar
  49. [49]
    P. SAMUEL-Modèles booléiens et hypothèse du continu, Sém. Bourbaki 1966/7, exposé 317, 12 pages, Benjamin, 1968.Google Scholar
  50. [50]
    D. SCOTT-A proof of the independence of the continuum hypothesis, Math. Systems Theory, 1(1967), p. 89–111.MATHMathSciNetCrossRefGoogle Scholar
  51. [51]
    J. COLE-Categories of sets and models of set theory, Proc. Bertrand Russell Memorial Logic Conference, Uldum 1971, Leeds 1973, p. 351–399.Google Scholar
  52. [52]
    G. OSIUS-Categorical set theory: a characterization of the category of sets, Journ. Pure and Applied Alg., 4(1974), p. 79–119.MATHMathSciNetCrossRefGoogle Scholar
  53. [53]
    M. TIERNEY-Sheaf theory and the continuum hypothesis, in [8], p. 13–42.Google Scholar

Copyright information

© N. Bourbaki 1979

Authors and Affiliations

  • Pierre Cartier

There are no affiliations available

Personalised recommendations