Skip to main content

Adaptive-grid methods for time-dependent partial differential equations

  • Part II: Specific Contributions
  • Conference paper
  • First Online:
Multigrid Methods

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 960))

Abstract

This paper contains a survey of recent developments of adaptive-grid algorithms for time-dependent partial differential equations. Two lines of research are discussed. One involves the automatic selection of moving grids to follow propagating waves. The other is based on stationary grids but uses local mesh refinement in both space and time. Advantages and disadvantages of both approaches are discussed. The development of adaptive-grid schemes shows promise of greatly increasing our ability to solve problems in several spacial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marsha Berger, Ph.D. Thesis, Stanford University, in prepartion.

    Google Scholar 

  2. Marsha Berger, W. D. Gropp, and Joseph Oliger, Grid Generation for time-dependent problems: Criteria and methods, Numerical grid generation techniques, NASA Conference Publication 2166, October 1981.

    Google Scholar 

  3. John Boltstad, Ph.D. Thesis, Stanford University, in preparation.

    Google Scholar 

  4. J. P. Boris, Flux-corrected transport modules for solving generalized continuity equations, NRL Memorandum Report 3237, March 1976.

    Google Scholar 

  5. J. P. Boris and D. L. Book, Solution of continuity equations by the method of flux-corrected transport, in Methods in Computational Physics, Vol. 16, Ed. by J. Killeen (Academic Press, Inc., New York, 1976).

    Google Scholar 

  6. R.C.Y. Chin and G. W. Hedstrom, A dispersion analysis for difference schemes: Tables of generalized Airy functions, Math. Comput. 32 (1978), pp. 1163–1170.

    Article  MathSciNet  MATH  Google Scholar 

  7. Alexandre Joel Chorin, Random choice solution of hyperbolic systems, J. Comput. Phys. 22 (1976), pp. 517–533.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tom DeNeef and Charles Hechtman, Numerical study of flow due to a spherical implosion, Comput. Fluids 6 (1978), pp. 185–202.

    Article  MATH  Google Scholar 

  9. H. A. Dwyer, F. Raiszadeh, and G. Otey, A study of reactive diffusion problems with stiff integrators and adaptive grids, Lecture Notes in Physics, Vol. 141, pp. 170–175, Springer-Verlag, New York, 1981.

    Google Scholar 

  10. Peter Eiseman, A multi-surface method of coordinate generation, J. Comput. Phys. 33 (1979), pp. 118–150.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. William Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englemwood Cliffs, New Jersey 1971.

    MATH  Google Scholar 

  12. R. J. Gelinas, S. K. Doss, and Keith Miller, The moving finite element method: Application to general partial differential equations with multiple large gradients, J. Comput. Phys. 40 (1981), pp. 202–249.

    Article  MathSciNet  MATH  Google Scholar 

  13. William D. Gropp, A test of moving mesh refinement for 2-D scalar hyperbolic problems, SIAM J. Sci. Stat. Comput. 1 (1980), pp. 191–197.

    Article  MathSciNet  MATH  Google Scholar 

  14. Keith Miller and Robert N. Miller, Moving finite elements, I, SIAM J. Numer. Anal. 18 (1981), pp. 1019–1032.

    Article  MathSciNet  MATH  Google Scholar 

  15. Keith Miller, Moving finite elements. II, SIAM J. Numer. Anal. 18 (1981), pp. 1033–1057.

    Article  MathSciNet  MATH  Google Scholar 

  16. Man Mohan Rai and Dale A. Anderson, The use of adaptive grids in conjunction with shock capturing methods, AIAA Paper 81-1012, Proceedings of Computational Fluid Dynamics Conference, 1981.

    Google Scholar 

  17. M. D. Salas, Shock fitting method for complicated two-dimensional supersonic flows, AIAA J. 14 (1976), pp. 583–588.

    Article  MATH  Google Scholar 

  18. Gary A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1978), pp. 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  19. Göran Starius, Composite mesh difference methods for elliptic boundary value problems, Numer. Math. 28 (1977), pp. 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  20. Joe F. Thompson, Frank C. Thames, and C. Wayne Mastin, TOMCAT — a code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies, J. Comput. Phys. 24 (1977), pp. 274–302.

    Article  MATH  Google Scholar 

  21. W. M. Tscharnuter and K.-H. Winkler, A method for computing selfgravitating gas flows with radiation, Compt. Phys. Comm. 18 (1979), pp. 171–199.

    Article  Google Scholar 

  22. G. B. Whitham, Linear and nonlinear waves, Wiley, New York, 1974.

    MATH  Google Scholar 

  23. Forman Williams, Combustion Theory, Addison-Wesley, Rading, Massachusetts, 1965.

    Google Scholar 

  24. K.-H. Winkler, Über ein numerisches Verfahren zur Berechnung instationärer sphärischer Stossfronten mit Strahlung, Max Planck Institute for Physics and Astrophysics, Report MPI-PAE/ASTRO 90, Munich, 1976.

    Google Scholar 

  25. Paul Woodward and Phillip Colella, High resolution difference schemes for compressible gas dynamics, Lecture Notes in Physics, Vol. 141, pp. 434–441, Springer-Verlag, Berlin-Heidelberg-New York, 1981.

    Google Scholar 

  26. N. N. Yanenko, E. A. Kroshko, V. V. Liseikin, V. M. Fomin, V. P. Shapeev, and Yu. A. Shitov, Methods for the construction of moving grids for problems of fluid dynamics with big deformations, Lecture Notes in Physics, Vol. 59, pp. 454–459, Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  27. N. N. Yanenko, V. M. Kovenya, V. D. Lisejkin, V. M. Formin, and E. V. Vorozhtsov, On some methods for the numerical simulation of flows with complex structure, Comput. Meth. Appl. Mech. Eng. 17/18 (1979), pp. 659–671.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu Youlan, Chen Bingmu, Zhang Zuomin, Zhong Xichang, Qin Boliang, and Quanquan, difference schemes for initial-boundary value problems of hyperbolic systems and examples of application, Sci. Sinica, Special issue II (1979), pp. 261–278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Hackbusch U. Trottenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Hedstrom, G.W., Rodrique, G.H. (1982). Adaptive-grid methods for time-dependent partial differential equations. In: Hackbusch, W., Trottenberg, U. (eds) Multigrid Methods. Lecture Notes in Mathematics, vol 960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0069939

Download citation

  • DOI: https://doi.org/10.1007/BFb0069939

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11955-5

  • Online ISBN: 978-3-540-39544-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics