Advertisement

Self-dual Yang-Mills fields

  • J. H. Rawnsley
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 755)

Keywords

Modulus Space Vector Bundle Principal Bundle Holomorphic Section Holonomy Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Atiyah, M. F., Hitchin, N. J., Drinfeld, V. G., Manin, Yu. I. Phys. Letters A 65(1978)185–187.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Atiyah, M. F., Hitchin, N. J., Singer, I. M. Self-duality in four-dimensional Riemannian geometry. To appear in Proc. Roy. Soc.Google Scholar
  3. [3]
    Atiyah, M. F., Jones, J. D. S. Commun. Math. Phys. 61 (1978)97–118.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Atiyah, M. F., Ward, R. S. Commun. Math. Phys. 55(1977)117–124.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Barth, W., Hulek, K. Monads and moduli of vector bundles. Preprint, Erlangen, 1978.Google Scholar
  6. [6]
    Belavin, A. A., Polyakov, A. M., Schwartz, A. S., Tyupkin, S. Phys. Letters B 59(1976)85–87.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Bernard, C. W., Christ, N. H., Guth. A. H., Weinberg, E. J. Instanton parameters for arbitrary gauge groups. Preprint, Columbia, 1977.Google Scholar
  8. [8]
    Christ, N. H., Weinberg, E. J., Stanton, N. K. General self-dual Yang-Mills solutions. Preprint, Columbia, 1978.Google Scholar
  9. [9]
    Corrigan, E. F., Fairlie, D. B., Templeton, S., Goddard, P. A Green's function for the general self-dual gauge field. Preprint, Ecole Normale Supérieure, Paris, 1978.Google Scholar
  10. [10]
    Hartshorne, R. Commun. Math. Phys. 59(1978)1–15.MathSciNetCrossRefGoogle Scholar
  11. [11.]
    Horrocks, G. Proc. London Math. Soc. 14(1964)689–713.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Jackiw, R., Nohl, C., Rebbi, C. Phys. Rev. D 15(1977)1642–1654.CrossRefGoogle Scholar
  13. [13]
    Jackiw, R., Rebbi, C. Phys Letters B 57(1977)189–192.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Kuranishi, M. New proof for the existence of locally complete families of complex structures, ‘Proceedings of the conference on complex analysis, Minneapolis, 1964', Springer-Verlag, New York(1965).Google Scholar
  15. [15]
    Nijenhuis, A., Woolf, W. Annals of Math. 77(1963)424–489.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Penrose, R. Reports on Mathematical Physics 12(1977)65–76.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Rawnsley, J. H. On the Atiyah-Hitchin-Drinfeld-Manin vanishing theorem for cohomology groups of instanton bundles. Preprint, Dublin Institute for Advanced Studies, 1978.Google Scholar
  18. [18]
    Schwarz, A. S. Phys. Letters B 67(1977)172–174.CrossRefGoogle Scholar
  19. [19]
    Serre, J.-P. Annals Inst. Fourier (Grenoble) 6(1956)1–42.CrossRefGoogle Scholar
  20. [20]
    Yang, C. N., Mills, R. Phys. Rev. 96(1954)191–195.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. H. Rawnsley
    • 1
  1. 1.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4Ireland

Personalised recommendations