Advertisement

Integrable systems and algebraic curves

  • H. P. McKean
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 755)

Keywords

Solitary Wave Elliptic Curve Theta Function Trace Formula Toda Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADLER, M.: Some finite-dimensional systems and their scattering behavior. Comm. Math. Phys. 55 (1977) 195–230.MathSciNetzbMATHCrossRefGoogle Scholar
  2. _____: Completely integrable systems and symplectic action. J. Math. Phys. (to appear).Google Scholar
  3. _____: On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equation. Inventiones Math. (1979)Google Scholar
  4. ADLER, M., and J. MOSER: On a class of polynomials connected with the Korteweg-de Vries equation. Comm. Math. Phys. 61 (1978) 1–30.MathSciNetzbMATHCrossRefGoogle Scholar
  5. AGRANOVICH, Z., and V. MARCENKO: The Inverse Scattering Theory. Gordon and Breach, New York, 1963.Google Scholar
  6. AIRAULT, H., H. P. McKEAN, and J. MOSER: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. CPAM 30 (1977) 95–148.MathSciNetzbMATHGoogle Scholar
  7. AKHIEZER, N.: A continuous analogue of orthogonal polynomials on a system of intervals. Dokl.Akad. Nauk 141 (1961) 263–266; Sov. Math. 2 (1961) 1409–1412.MathSciNetzbMATHGoogle Scholar
  8. ARNOLD, V.: Sur la géométrie différentielle des groupes de Lie de dimension infini et ses spplications à l'hydrodynamique des fluides parfaits. Ann. Inst. Grenoble 16 (1966) 319–361.CrossRefGoogle Scholar
  9. _____: Mathematical Methods of Classical Mechanics. Nauka, Moscow, 1974; Springer Verlag, New York, 1978.Google Scholar
  10. BAKER, H.: Abel's Theorem and the Allied Theory, Including the Theory of the Theta Functions. Cambridge U. Press, Cambridge, 1897.zbMATHGoogle Scholar
  11. _____: Note on the foregoing paper "Commutative ordinary differential operators" by J. L. BURCHNALL and T. W. CHAUNDY. Proc. Royal Sco. London 118 (1928) 584–593.CrossRefGoogle Scholar
  12. BARGMANN, V.: On the connection between phase shifts and scattering potentials. Rev. Mod. Phys.. 21 (1949) 488–493.MathSciNetzbMATHCrossRefGoogle Scholar
  13. BAUR, L.: Aufstellung eines vollständigen System von Differentialen erster Gattung in einem cubischen Funktionenkörpers. Math. Ann. 46 (1895) 31–61.CrossRefGoogle Scholar
  14. BLISS, G.: Algebraic Functions. AMS Publ. 16, New York, 1933.Google Scholar
  15. BORG, G.: Eine Umkerhrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78 (1945) 1–96.MathSciNetCrossRefGoogle Scholar
  16. BOUSSINESQ, J.: Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiqant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 7 (1872) 55–108.MathSciNetGoogle Scholar
  17. BURCHNELL, J., and T. CHAUNDY: Commutative ordinary differential operators. Proc. London Math. Soc. 21 (1922) 420–440; Proc.Royal Soc. London 118 (1928) 557–583; 134 (1931) 471–485.MathSciNetGoogle Scholar
  18. BUSLAEV, V., and L. FADDEEV: On trace formulas for singular Sturm-Liouville operators. Dokl. Akad. Nauk. 132 (1960) 13–16.MathSciNetzbMATHGoogle Scholar
  19. CALOGERO, F.: Solution of the n-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12 (1971) 419–436.MathSciNetCrossRefGoogle Scholar
  20. CARLEMAN, T.: Sur les fonctions inverses des fonctions entières. Ark. Mat. Astron. Phys. 15 (1927).Google Scholar
  21. CHOODNOVSKY, D., and G. CHOODNOVSKY: Seminaire sur les Équations Non-linéaires. Centre de Math., École Poly., Palaisseau, 1977/78.Google Scholar
  22. _____: Completely integrable class of mechanical systems connected with the Korteweg-de Vries and multicomponent Schrödinger equations (1). Sem. Diophantienne, École Poly., Palaisseau, 10 June 1978.Google Scholar
  23. _____: Multi-dimensional two-particle problem with non-central potential. Sem. Diophantienne, École Poly., 22 Nov. 1978.Google Scholar
  24. CHU, F., D. McLAUGHLIN, and A. SCOTT: The soliton: a new concept in applied science. Proc. IEEE 61 (1973) 1443–1483.MathSciNetCrossRefGoogle Scholar
  25. DATE, E., and S. TANAKA: Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda Lattice. Progress Theor. Phys. 55 (1976) 457–465.MathSciNetzbMATHCrossRefGoogle Scholar
  26. DEIFT, P., and E. TRUBOWITZ: Inverse scattering on the line. CPAM (to appear).Google Scholar
  27. DIKII, L., and I. M. GELFAND: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Kortewegde Vries equations. Uspekhi Mat. Nauk 30 (1975) 67–100; Russ. Math. Surveys 30 (1975) 77–113.MathSciNetGoogle Scholar
  28. _____: Fractional powers of operators and Hamiltonian systems. Funkt. Anal. Pril. 10 (1976) 13–29.MathSciNetzbMATHGoogle Scholar
  29. DIRICHLET, P.: Vorlesungen über Zahlentheorie. F. Vieweg, Braunschweig, 1871.Google Scholar
  30. DONAGI, R.: Group law on the intersection of two quadrics. (to appear).Google Scholar
  31. DUBROVIN, B., and S. NOVIKOV: Periodic and conditionally periodic analogues of multi-soliton solutions of the Korteweg-de Vries equation. Dokl. Akad. Nauk 6 (1974) 2131–2144.MathSciNetGoogle Scholar
  32. DUBROVIN, B., V. MATVEEV, and S. NOVIKOV. Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties. Uspekhi Mat. Nauk 31 (1976) 55–136; Russ. Math. Surveys 31 (1976) 59–146.MathSciNetzbMATHGoogle Scholar
  33. DYM, H., and H. P. McKEAN: Fourier Series and Integrals. Academic Press, New York, 1972.zbMATHGoogle Scholar
  34. DYSON, F.: Fredholm determinants and inverse scattering problems. Comm. Math. Phys. 47 (1976) 171–183.MathSciNetzbMATHCrossRefGoogle Scholar
  35. EBIN, D., and J. MARSDEN: Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid. BAMS 75 (1969) 962–967, Ann. of Math, 92 (1970) 102–163.MathSciNetzbMATHCrossRefGoogle Scholar
  36. ESTABROOK, F., and H. WAHLQUIST: Bäcklund transformations for solutions of the Korteweg-de Vries equation. Phys. Rev. Letters 31 (1973) 1386–1390.MathSciNetCrossRefGoogle Scholar
  37. _____: Prolongation structures of non-linear evolution equations. J. Math. Phys. 17 (1976) 1–7.zbMATHCrossRefGoogle Scholar
  38. FADDEEV, L.: On the relation between the S-matrix and the potential of the one-dimensional Schrodinger equation. Tr. Mat. Inst. V.A. Steklova 73 (1964) 314–336; TAMS 65 (1966) 139–166.MathSciNetGoogle Scholar
  39. FADDEEV, L., and V. ZAKHAROV: Korteweg-de Vries equation: a completely integrable Hamiltonian system. Funkt. Anal. Pril. 5 (1971) 280–287.zbMATHGoogle Scholar
  40. FAY, J.: Theta Functions on Riemann Surfaces. Lect. Notes in Math. 352, Springer-Verlag, New York, 1973.zbMATHGoogle Scholar
  41. FERMI, E., J. PASTA, and S. ULAM: Studies of non-linear problems. Collected Papers of Enrico Fermi 2, p.978, Chicago, 1965.Google Scholar
  42. FLASCHKA, H.: The Toda lattice, (1) and (2). Phys. Rev. 9 (1974) 1924–1925; Prog. Theor. Phys. 51 (1974) 703–706.MathSciNetzbMATHCrossRefGoogle Scholar
  43. _____: Discrete and periodic illustrations of some aspects of the inverse method. Lect. Notes in Phys. 38 (1975) 441–466.MathSciNetzbMATHCrossRefGoogle Scholar
  44. FLASCHKA, H., and D. McLAUGHLIN: Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys. 55 (1976) 438.MathSciNetzbMATHCrossRefGoogle Scholar
  45. FORNBERG, G., and G. WHITHAM: A numerical and theoretical study of certain non-linear wave phenomena. Phil. Trans. Roy. Soc. London 289 (1978) 373–404.MathSciNetzbMATHCrossRefGoogle Scholar
  46. GARDINER, C.: Korteweg-de Vries equation and generalizations (4). The Korteweg-de Vries equation as a Hamiltonian system. J. Math. Phys. 12 (1971) 1548–1557.MathSciNetzbMATHCrossRefGoogle Scholar
  47. GARDINER, C., J. GREENE, M. KRUSKAL, and R. MIURA: Method for solving the Korteweg-de Vries equation. Phys. Rev. Letters 19 (1967) 1095–1097.zbMATHCrossRefGoogle Scholar
  48. _____: Korteweg-de Vries equation and generalizations (6). Methods for exact solution. CPAM 27 (1974) 97.zbMATHGoogle Scholar
  49. GARDINER, C., M. KRUSKAL, and R. MIURA. Korteweg-de Vries equation and generalizations (2). Existence of conservation laws and integrals of the motion. J. Math. Phys. 9 (1968) 1204–1209.zbMATHCrossRefGoogle Scholar
  50. GELFAND, I. M., and B. LEVITAN: On the determination of a differential equation from its spectral function. Izvest. Akad. Nauk 15 (1951) 309–360.MathSciNetGoogle Scholar
  51. GOLUBEV, V. V.: Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point. Nauka, Moscow, 1953; Monsin, Jerusalem, 1960.zbMATHGoogle Scholar
  52. GUILLEMIN, V., and D. KAZHDAN: Spectral rigidity of the Schrödinger operator on certain negatively curved 2-manifolds, (to appear).Google Scholar
  53. HENON, M.: Integrals of the Toda lattice. Phys. Rev. 9 (1974) 1421–1423.MathSciNetzbMATHCrossRefGoogle Scholar
  54. HENSEL, K., and G. LANDSBERG: Theorie der algebraischen Fonktionen einer Variabeln. Teubner, Leipzig, 1902, Chelsea Publ. Co., New York, 1965.Google Scholar
  55. HIROTA, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Letters 27 (1971) 1192–1194.zbMATHCrossRefGoogle Scholar
  56. _____: Exact n-solition solution of the wave equation of long waves in shallow water and non-linear lattices. J. Math. Phys. 14 (1973) 810–815.MathSciNetzbMATHCrossRefGoogle Scholar
  57. _____: Exact n-soliton solutions of a non-linear lumped network equation. J. Phys. Soc. Japan 35 (1973) 286–288.CrossRefGoogle Scholar
  58. HOCHSTADT, H.: Function-theoretic properties of the discriminant of Hill's equation. Math. Zeit. 82 (1963) 237–242.MathSciNetzbMATHCrossRefGoogle Scholar
  59. _____: On the determination of Hill's equation from its spectrum. Arch. Rat. Mech. Anal. 19 (1965) 353–362.MathSciNetzbMATHCrossRefGoogle Scholar
  60. HYMAN, M., appendix to P. LAX: Almost periodic solutions of the KdV equation. SIAM Rev. 18 (1976) 351–375.MathSciNetCrossRefGoogle Scholar
  61. INCE, E.: The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60 (1940) 47–63; 83–99.MathSciNetzbMATHCrossRefGoogle Scholar
  62. ITS, A., and V. MATVEEV: Hill's operator with a finite number of lacunae. Funkt. Anal. Pril. 9 (1975) 69–70.MathSciNetCrossRefGoogle Scholar
  63. JACOBI, C.: Gessamelte Werke, Bd. 7, supplement: Vorlesungen über Dynamik. Reimer, Berlin, 1884.Google Scholar
  64. KAC, M., and P. van MOERBEKE: On some periodic Toda lattices. PNAS USA 72 (1975) 1627–1629.MathSciNetzbMATHCrossRefGoogle Scholar
  65. _____ The solution of the periodic Toda lattice. PNAS USA 72 (1975) 2879–2880.zbMATHCrossRefGoogle Scholar
  66. _____: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16 (1975) 160–169.MathSciNetzbMATHCrossRefGoogle Scholar
  67. KADOMTSEV, B. B., and V. I. PETIASHVILII: On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk 192 (1970) 753–756; Sov. Phys. Dokl. 15 (1970) 539–541.Google Scholar
  68. KAY, I., and H. MOSES: Reflectionless transmission through dielectrics and scattering potentials. J. Appl. Phys. 27 (1956) 1503–1508.MathSciNetzbMATHCrossRefGoogle Scholar
  69. KAZHDAN, D., B. KOSTANT, and S. STERNBERG: Hamiltonian group actions and dynamical systems of Calogero type. CPAM 31 (1978) 481–508.MathSciNetzbMATHGoogle Scholar
  70. KORTEWEG, D., and G. de VRIES: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39 (1895) 422–443.MathSciNetzbMATHCrossRefGoogle Scholar
  71. KOSTANT, B.: Whittaker vectors and representation theory. Invent. Math. 48 (1978) 101–104.MathSciNetzbMATHCrossRefGoogle Scholar
  72. _____: Ann. Math. (to appear).Google Scholar
  73. KOVALEVSKAYA, S.: Sur le problème de la rotation d'un corps autour d'un point fixe. Acta Math. 12 (1889) 177–232; Navehnye Raboty, Acad. Sci. USSR, 1948.MathSciNetCrossRefGoogle Scholar
  74. KRICHEVER, I. M.: Algebraic-geometric construction of the Zakharov-Shabat equations and their solutions. Dokl. Akad. Nauk 227 (1976) 291–294; Sov. Math. Dokl. 17 (1976) 394–397.zbMATHGoogle Scholar
  75. _____: The method of algebraic geometry in the theory of non-linear equations. Uspekhi Mat. Nauk 32 (1977) 183–208.zbMATHGoogle Scholar
  76. _____: On rational solutions of the Kadmotsev-Petiashvilii equation and integrable systems of n particles on the line. Funkt. Anal. Pril. 12 (1978) 76–78.zbMATHGoogle Scholar
  77. KPUSKAL, M.: Non-linear wave equations. Lect. Notes in Phys. 38 (1975) 310–354.CrossRefGoogle Scholar
  78. KRUSKAL, M., and N. ZABUSKY: Interactions of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Letters 15 (1965) 240–243.zbMATHGoogle Scholar
  79. LAMB, G.: Bäcklund transformations at the turn of the century. Lect. Notes in Math. 515 (1976) 69–79.MathSciNetzbMATHCrossRefGoogle Scholar
  80. LANG, S.: Division points on curves. Ann. Math. Pure Appl. 70 (1965) 229–234.MathSciNetzbMATHCrossRefGoogle Scholar
  81. _____: Introduction to Algebraic and Abelian Functions. Addison-Wesley Publ. Co., Reading, 1972.zbMATHGoogle Scholar
  82. LAX, P.: Integrals of non-linear equations of evolution and solitary waves. CPAM 21 (1968) 467–490.MathSciNetzbMATHGoogle Scholar
  83. _____: Periodic solutions of the Koretweg-de Vries equation. CPAM 28 (1975) 141–188.MathSciNetGoogle Scholar
  84. LEVINSON, N.: On the uniqueness of the potential in the Schrödinger equation for a given asymptotic phase. Danske Vid. Selsk. Math. Fys. Medd. 25 (1944) 1–29.MathSciNetGoogle Scholar
  85. _____: The inverse Sturm-Liouville problem. Math. Tidsskr. (1949) 25–30.Google Scholar
  86. _____: Certain explicit relations between phase shift and scattering potential. Phys. Rev. 89 (1953) 755–757.MathSciNetzbMATHCrossRefGoogle Scholar
  87. MAGNUS, W., and W. WINKLER: Hill's Equation. Interscience-Wiley, New York, 1966.zbMATHGoogle Scholar
  88. MANAKOV, S.: On complete integrability and stochastization in discrete dynamical systems. Z. Eksp. Teor. Fiz. 67 (1974) 543–555.MathSciNetGoogle Scholar
  89. _____: Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body. Funkt. Anal. Pril. 10 (1976) 93–94.MathSciNetzbMATHGoogle Scholar
  90. MARCENKO, V., and I. V. OSTROVSKII: A characterization of the spectrum of Hill's operator. Sov. Math. Dokl. 16 (1975) 761–765; Mat. Sbornik 139 (1975) 540–606.zbMATHGoogle Scholar
  91. MATVEEV, V.: 373, U. Wroclaw, June 1976.Google Scholar
  92. McKEAN, H. P.: Selberg's trace formula as applied to a compact Riemann surface. CPAM 25 (1972) 225–246.MathSciNetGoogle Scholar
  93. _____: Stability for the Korteweg-de Vries equation. CPAM 30 (1977) 347–353.MathSciNetzbMATHGoogle Scholar
  94. _____: Boussinesq's equation as a Hamiltonian System. Adv. Math. Suppl. 3 (1978) 217–226.MathSciNetzbMATHGoogle Scholar
  95. _____: Theta functions, solitons, and singular curves. (to appear).Google Scholar
  96. _____: Units of Hill's curves. (to appear).Google Scholar
  97. _____: Int. Cong. Math. Helsinki (to appear).Google Scholar
  98. _____: Toda lattice, tridiagonal matrices, and singular curves. (to appear).Google Scholar
  99. McKEAN, H. P., and P. van MOERBEKE: The spectrum of Hill's equation. Inventiones Math. 30 (1975) 217–274.zbMATHCrossRefGoogle Scholar
  100. _____: Hill and Toda curves. CPAM (to appear).Google Scholar
  101. McKEAN, H. P., and E. TRUBOWITZ: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. CPAM 29 (1976) 143–226.MathSciNetzbMATHGoogle Scholar
  102. _____: Hill's surfaces and their theta functions. BAMS (1978)-Google Scholar
  103. MEIMAN, N.: The theory of 1-dimensional Schrödinger operators with periodic potential. J. Math. Phys. 18 (1977) 834–848.MathSciNetCrossRefGoogle Scholar
  104. MIURA, R.: Korteweg-de Vries equation and generalizations (1). A remarkable explicit non-linear transformation. J. Math. Phys. 9 (1968) 1202–1204.MathSciNetzbMATHCrossRefGoogle Scholar
  105. _____ ed.: Bäcklund Transformations. Lect. Notes in Math. 515 Springer-Verlag, New York, 1976.Google Scholar
  106. MOERBEKE, P. van: The spectrum of Jacobi matrices. Inventiones Math. 37(1976), 45–81.MathSciNetzbMATHCrossRefGoogle Scholar
  107. MOERBEKE, P. van, and D. MUMFORD: The spectrum of difference operators and the theory of curves. (to appear).Google Scholar
  108. MORRIS, H.: Prolongation structures and a generalized inverse scattering problem. J. Math. Phys. 17 (1976) 1867–1869.MathSciNetzbMATHCrossRefGoogle Scholar
  109. MOSER, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16 (1975) 197–220.MathSciNetzbMATHCrossRefGoogle Scholar
  110. ____: Finitely many mass points on the line under the influence of an exponential potential — an integrable system. Lect. Notes in Phys. 38 (1975) 467–497.MathSciNetzbMATHCrossRefGoogle Scholar
  111. ____: Various aspects of integrable Hamiltonian systems. CIME, Bressanone (1978).zbMATHGoogle Scholar
  112. MOSER, J., and E. TRUBOWITZ: (to appear).Google Scholar
  113. MUMFORD, D.: An algebraic-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations. (to appear).Google Scholar
  114. MURRAY, A.: Existence and regularity for solutions of the Korteweg-de Vries equation. Arch. Rat. Mech. (1979)-Google Scholar
  115. ____: Solutions of the Korteweg-de Vries equation evolving from a "box" and other irregular initial functions. Duke Math. J. 45 (1978) 149–181.MathSciNetCrossRefGoogle Scholar
  116. NEUMANN, C.: De problemate quodam mechanica, quod ad primam integralium ultra-ellipticorum classem revocatur. J. Reine U. Angew Math. 56 (1859) 54–66.Google Scholar
  117. NEVANLINNA, F.: Analytic Functions. Springer-Verlag, Berlin, 1970.zbMATHCrossRefGoogle Scholar
  118. NOVIKOV, S.: The periodic problem for the Korteweg-de Vries equation. Funkt. Anal. Pril. 8 (1974) 54–66.MathSciNetzbMATHCrossRefGoogle Scholar
  119. OLSHANETSKY, M., and A. PERELOMOV: Completely integrable Hamiltonian systems concerned with semi-simple Lie algebras. Inventiones Math. 37 (1976) 93–108.MathSciNetzbMATHCrossRefGoogle Scholar
  120. POINCARÉ, H.: Les Méthodes Nouvelles de la Méchanique Céleste. Gauthier-Villars Cie., Paris, 1892; Dover Publ. Co., New York, 1957.zbMATHGoogle Scholar
  121. RAYLEIGH,: Phil. Mag. 1 (1876) 257.CrossRefGoogle Scholar
  122. SCHWARTZ, M.: (to appear).Google Scholar
  123. SCOTT-RUSSELL, J.: Report on waves. Proc. Roy. Soc. Edinburgh (1844) 319–320.Google Scholar
  124. SIEGEL, C. L.: Topics in Complex Function Theory (2). Interscience-Wiley, New York, 1971.Google Scholar
  125. SINGER, I. M.: (to apper).Google Scholar
  126. STEIMANN, U.: Äquivalente periodische potentiale. Helv. Phys. Acta 30 (1957) 515–520.MathSciNetzbMATHGoogle Scholar
  127. STIELTJES, T. J.: Sur la réduction en fraction continue d'une série procedant suivant les puissances descendentes d'une variable. Oeuvres Complètes 2, 184–206. Noordhoff, Groningen, 1918.Google Scholar
  128. SYMES, W.: A Poisson structure on the space of symbols. MRC Technical Summary Report, Madison, Wisc., April 1978.Google Scholar
  129. TANAKA, S.: On the n-tuple wave solutions of the Korteweg-de Vries equation. Publ. RIMS Kyoto 8 (1972/73) 419–427.MathSciNetzbMATHCrossRefGoogle Scholar
  130. ____: Korteweg-de Vries equation: construction of solutions in terms of scattering data. Osaka J. Math. 11 (1974) 49–59.MathSciNetzbMATHGoogle Scholar
  131. TAPPERT, F.: (to apper).Google Scholar
  132. THICKSTUN, W.: A system of particles equivalent to solitons. J. Math. Anal. Appl. 55 (1976) 335–346.MathSciNetzbMATHCrossRefGoogle Scholar
  133. TODA, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Japan 23 (1967) 501–506.CrossRefGoogle Scholar
  134. ____: Studies on a nonlinear lattice. Ark. for Det Fysiske Sem. Trondheim 2 (1974).Google Scholar
  135. TRUBOWITZ, E.: The inverse problem for periodic potentials. CPAM 30 (1977) 321–337.MathSciNetzbMATHGoogle Scholar
  136. WHITHAM, G.: Linear and Nonlinear Waves. Interscience-Wiley, New York, 1974.zbMATHGoogle Scholar
  137. ZAKHAROV, V.: On stochastization of one-dimensional chains of nonlinear oscillators. Zh. Eksp. Teor. Fiz. 65 (1973) 219–225.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • H. P. McKean
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York

Personalised recommendations