Advertisement

On the prevalence of aperiodicity in simple systems

  • Edward N. Lorenz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 755)

Keywords

Rayleigh Number Stable Period Strange Attractor Singular Solution Periodic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Bjerknes, Das Problem der Wettervorhersage, betrachtet vom Standpunkt der Mechanik und der Physik, Meteorol. Zeit. (1904), 107.Google Scholar
  2. 2.
    J. Guckenheimer, On bifurcation of maps of the internal, Invent. Math., 39 (1977), 165–178.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. Julia, Mémoire sur l'itération des fonctions rationelle, J. Math. Pures. Appl., 4 (1918), 47–245.zbMATHGoogle Scholar
  4. 4.
    E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130–141.CrossRefGoogle Scholar
  5. 5.
    E.N. Lorenz, The problem of deducing the climate from the governing equations, Tellus, 16 (1964), 1–11.CrossRefGoogle Scholar
  6. 6.
    E.N. Lorenz, An N-cycle time-differencing scheme for stepwise numerical integration. Mon. Weather Rev., 99, 644–648.Google Scholar
  7. 7.
    R.M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–467.CrossRefGoogle Scholar
  8. 8.
    L.F. Richardson, Weather prediction by numerical process. Cambridge Univ. Press (1922).Google Scholar
  9. 9.
    D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Physics, 20 (1971), 167–192.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    B. Saltzman, Finite amplitude free convection as an initial value problem-I, J. Atmos. Sci., 19 (1962), 329–341.CrossRefGoogle Scholar
  11. 11.
    D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260–267.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    N. Wiener, Nonlinear prediction and dynamics. Proc. 3rd Berkeley Sympos. Math. Statistics and Probability, Vol. 3 (1956), 247–252.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Edward N. Lorenz
    • 1
  1. 1.Massachusetts Institute of TechnologyUSA

Personalised recommendations