Advertisement

Non-unique continuation for certain Ode's in Hilbert space and for uniformly parabolic and elliptic equations in self-adjoint divergence form

  • K. Miller
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 316)

Keywords

Dirichlet Condition Unique Continuation State Heat Flow Logarithmic Convexity Unique Continuation Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agmon, S., Unicité et convexité dans les problèmes différentiels, Seminar Univ. di Montréal, Les Presses de l'Univer. Montréal, 1966.zbMATHGoogle Scholar
  2. [2]
    Agmon, S., and Nirenberg, L., Properties of solutions of ordinary differential equations in Banach space, Comm. Pure and Applied Math., 16 (1963), pp. 121–239.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., 36 (1957), pp. 235–249.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Carleman, T., Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendentes, Ark. Mat. Astr. Fys. 26B (1939) No. 17, pp. 1–9.MathSciNetzbMATHGoogle Scholar
  5. [5]
    De Giorgi, E., Sulla differenziabilità e l'analiticità delle extremali degli integrali multipli, Mem. Acc. Sc. Torino, III, 3 (1957), pp. 25–43.Google Scholar
  6. [6]
    Lions, J., and Malgrange, B., Sur l'unicité rétrograde, Math. Scand., 8 (1960), pp. 277–286.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Nash, J., Continuity of the solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), pp. 931–954.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Nickel, K., Gestaltaussagen über Lösungen parabolischer Differentialgleichungen, J. Reine Angew. Math. 211 (1962), pp. 78–94.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Plis, A., On nonuniqueness in the Cauchy problem for an elliptic second order differential equation, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron. Phys., 11 (1963), pp. 95–100.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin 1973

Authors and Affiliations

  • K. Miller
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations