Advertisement

Some general remarks on improperly posed problems for partial differential equations

  • L. E. Payne
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 316)

Keywords

Cauchy Problem Elliptic Equation Continuous Dependence Unique Continuation Abstract Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abdul-Latif, A.I., Uniqueness of the solution of some hyperbolic boundary value problems, Ph.D. dissertation, University of Maryland (1966).Google Scholar
  2. [2]
    Adelson, L., Singular perturbations of a class of improperly posed problems, Ph.D. dissertation, Cornell (1970).Google Scholar
  3. [3]
    Agmon, S., Unique continuation and lower bounds for solutions of abstract differential equations, Proc. Inter. Congress Math. Stockholm (1962), pp. 301–305.Google Scholar
  4. [4]
    Agmon, S., Unicité et convexité dans les problèmes différentiels, Sem. Math. Sup. (1965), University of Montreal Press (1966).Google Scholar
  5. [5]
    Agmon, S., Lower bounds for solutions of Schrödinger equations, J. D'Analyse Math., 23 (1970), pp. 1–25.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Agmon, S., and Nirenberg, L., Lower bounds and uniqueness theorems for solutions of differential equations in Hilbert space, Comm. Pure Appl. Math., 20 (1967), pp. 207–229.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pure Appl., 36 (1957), pp. 235–249.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Aziz, A.K., Gilbert, R.P., and Howard, H.C., A second order non-linear elliptic boundary value problem with generalised Goursat data, Ann. Mat. Pura Appl., 72 (1966), pp. 325–341.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Bergman, S., Integral operators in the theory of linear partial differential equations, (Erg. d. math. u. Grenzgebiete, vol. 23) Springer, Berlin (1961).Google Scholar
  10. [10]
    Bertolini, F., Sul problema di Cauchy per l'equazioné di Laplace in tre variabili independenti, Ann. Mat. Pura Appl., 40 (1956), pp. 121–128.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Berzanskii, Ju. M., A uniqueness theorem in the inverse spectral problem for Schrödinger's equation, Trudy Mosk. Mat. Obsc., 7 (1968)Google Scholar
  12. [12]
    Bourghin, D.G., and Duffin, R.J., The Dirichlet problem for the vibrating string equation, Bulletin Amer. Math. Soc., 45 (1939), pp. 851–858.zbMATHCrossRefGoogle Scholar
  13. [13]
    Brun, L., Sur l'unicité en thermoélasticité dynamique et diverses expressions anologues à la formule de Clapeyron, C.R. Acad. Sci. Paris, 261 (1965), pp. 2584–2587.MathSciNetGoogle Scholar
  14. [14]
    Brun, L., Méthodes energétiques dans les systèmes évolutifs linéaires, Premier partie: Séparation des énergies, Deuxième partie: Théoremès d'unicité, J. de Mechanique, 8 (1969), pp. 125–166, 167–192.MathSciNetGoogle Scholar
  15. [15]
    Cahen, G., Determination experimentale des parametres des systèmes a retard, Revue Franc. Trait Inf. (1964), pp. 15–23.Google Scholar
  16. [16]
    Calderon, A.P., Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., 80 (1958), pp. 16–36.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Cannon, J.R., Determination of the unknown coefficient in a parabolic differential equation, Duke Math. J., 30 (1963), pp. 313–323, see also Determination of certain parameters in heat conduction problems, J. Math. Anal. Appl., 8 (1964), pp. 188–201.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Cannon, J.R., A Cauchy problem for the heat equation, Ann. Mat. Pura Appl., 66 (1964), pp. 155–165.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Cannon, J.R., Determination of the unknown coefficient k(u) in the equation ∇·k(u)∇u=0 from overspecified boundary data, J. Math. Anal. Appl., 18 (1967), pp. 112–114.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Cannon, J.R., Determination of an unknown heat source from over-specified boundary data, SIAM J. Numer. Anal., 5 (1968), pp. 275–286.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Cannon, J.R., and Dunninger, D.R., Determination of an unknown forcing function in a hyperbolic equation from overspecified data, Ann. Mat. Pura Appl., 85 (1970), pp. 49–62.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Cannon, J.R., and Hill, C.D., Continuous dependence of bounded solutions of a linear parabolic differential equation upon interior Cauchy data, Duke Math. J., 35 (1968), pp. 217–230.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Carleman, T., Sur un problème de unicité pour des systêmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Math. Astr. Fys., 26B (1939), pp. 1–9.MathSciNetzbMATHGoogle Scholar
  24. [24]
    Cohen, P.J., and Lees, M., Asymptotic decay of solutions of differential inequalities, Pac. J. Math., 11 (1961), pp. 1235–1249.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Colton, D., Paper in this volume.Google Scholar
  26. [26]
    Colton, D., Cauchy's problem for almost linear elliptic equations in two independent variables, J. Approx. Theory, 3 (1970), pp. 66–71.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Conlan, J., and Trytten, G., Pointwise bounds in the Cauchy problem for elliptic systems of partial differential equations, Arch. Rat. Mech. Anal., 22 (1966), pp. 143–152.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Cordes, H.O., Über die Bestimmheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nach. Akad. Wiss. Göttingen Math.-Phys., 11 (1956), pp. 239–258.MathSciNetzbMATHGoogle Scholar
  29. [29]
    Crooke, P.S., On the Saffman model for the flow of a dusty gas and some related eigenvalue inequalities, Ph.D., dissertation, Cornell (1970).Google Scholar
  30. [30]
    Douglas, J., The approximate solution of an unstable physical problem subject to constraints, Functional Anal. and Optimization. Academic Press, New York (1966), pp. 65–66.Google Scholar
  31. [31]
    Douglas, J., Approximate continuation of harmonic and parabolic functions, Numerical Sol. of Partial Diff. Eqtns., Academic Press (1966).Google Scholar
  32. [32]
    Douglas, J., and Gallie, T.M., An approximate solution of an improper boundary value problem, Duke Math. J., 26 (1959), pp. 339–348.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    Douglas, J., and Jones, B.F., The determination of a coefficient in a parabolic differential equation, II Numerical approximation, J. Math. Mech., 11 (1962), pp. 919–926.MathSciNetzbMATHGoogle Scholar
  34. [34]
    Douglis, A., Uniqueness in the Cauchy problem for elliptic systems of equations, Comm. Pure Appl. Math., 6 (1953), pp. 291–298.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    Douglis, A., On uniqueness in Cauchy problems for elliptic systems of equations, Comm. Pure Appl. Math., 13 (1960), pp. 593–607.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    Dunninger, D.R., and Zachmonoglou, E.C., The condition for uniqueness of the Dirichlet problem for hyperbolic equations in cylindrical domains, J. Math. and Mech., 18 (1969), pp. 763–766.MathSciNetzbMATHGoogle Scholar
  37. [37]
    Dyer, R.H., Paper in this volume.Google Scholar
  38. [38]
    Dyer, R.H., and Edmunds, D.E., Lower bounds for solutions of the Navier-Stokes equations, Proc. Lond. Math. Soc., 18 (1968), pp. 169–178.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    Edelstein, W.S., A uniqueness theorem in the linear theory of elasticity with microstructure, Acta. Mech., 8 (1969), pp. 183–184.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    Edmunds, D.E., Asymptotic behaviour of solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 22 (1966), pp. 15–21.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    Fadeev, L.D., Increasing solutions of Schrödinger's equation, Dokl. Akad. Nauk SSSR, 165 (1965), pp. 514–517.Google Scholar
  42. [42]
    Fichera, G., Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Math., No. 8, Springer-Verlag (1965).Google Scholar
  43. [43]
    Foias, C., Gussi, G., and Poenaru, V., Sur le problème de Cauchy pour le type elliptique à deux variables, Acad. Rep. Pop. Roman. Bull. Mat. Fiz., 7 (1955), pp. 97–103.MathSciNetGoogle Scholar
  44. [44]
    Fox, D.W., and Pucci, C., The Dirichlet problem for the wave equation, Ann. di Mat. Pura Appl., 46 (1958), pp. 155–182.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    Franklin, J., Well posed stochastic extensions of ill-posed linear problems, J. Math. Anal. Appl., 31 (1970), pp. 682–716.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    Gajewski, H., and Zacharias, K., Zur regularisierung liner Klasse nichtkorrekter Probleme bei Evolutionsgleichungen, J. Math. Anal. Appl., 38 (1972), pp. 784–789.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    Garabedian, P., Partial differential equations, Interscience Publishers, New York (1964).zbMATHGoogle Scholar
  48. [48]
    Garabedian, P., and Lieberstein, H.M., On the numerical calculation of detached bow shock waves in hypersonic flow, J. Aero. Sci., 25 (1958), pp. 109–118.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    Gilbert, R.P., Function theoretic methods in partial differential equations, Academic Press (1969).Google Scholar
  50. [50]
    Hadamard, J., Lectures on the Cauchy problem in linear partial differential equations, Yale University Press (1923).Google Scholar
  51. [51]
    Heinz, E., Über die Eindentigkeit beim Cauchyschen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nach. Akad. Wiss. Göttingen Math. Phys. IIa, 10 (1955), pp. 1–12.MathSciNetzbMATHGoogle Scholar
  52. [52]
    Hills, R., On the stability of linear dipolar fluids and On uniqueness and continuous dependence for a linear micropolar fluid, (both to appear)Google Scholar
  53. [53]
    Holmgren, E., Über Systeme von linearen partielle Differentialgleichungen, Ofv. kongl. Vet.-Akad. Förk., 58 (1901), pp. 91–103.zbMATHGoogle Scholar
  54. [54]
    Hörmander, L., On the uniqueness of the Cauchy problem, Math. Scand., 6 (1958), pp. 213–225.MathSciNetzbMATHGoogle Scholar
  55. [55]
    Hyman, M., Electrostatic focussing of electron beams by coaxial cylinders, Symp. on Partial Diff. Eqtns. and Cont. Mech. Math. Research Center, University of Wisconsin (1960), p. 354.Google Scholar
  56. [55a]
    Radley, D.E., The theory of the Pierce-type electron gun, J. Electr. Constr., 4 (1958), see also Electrodes for convergent Pierce-type electron guns, J. Electr. Constr., 15 (1963).Google Scholar
  57. [56]
    Ivanov, V.K., The Cauchy problem for the Laplace equation in an infinite strip, Diff. Uravneniya, 1 (1965), pp. 131–136.MathSciNetGoogle Scholar
  58. [57]
    Ivanov, V.K., On ill-posed problems, Math. 5b, 61 (1965), pp. 211–223, see also On a method in the theory of incorrect problems of mathematical physics, Symp. Partial Diff. Eqtns. (Novosibirsk) (1963), pp. 102–107.Google Scholar
  59. [58]
    John, F., The Dirichlet problem for the wave equation, Amer. J. Math., 63 (1941), pp. 141–154.MathSciNetzbMATHCrossRefGoogle Scholar
  60. [59]
    John, F., Numerical solution of the heat equation for preceding time, Ann. Mat. Pura Appl., 40 (1955), pp. 129–142.MathSciNetzbMATHCrossRefGoogle Scholar
  61. [60]
    John, F., A note on "improper" problems in partial differential equations, Comm. Pure Appl. Math., 8 (1955), pp. 494–495.MathSciNetCrossRefGoogle Scholar
  62. [61]
    John, F., Numerical solution of problems which are not well-posed in the sense of Hadamard, Proc. Rome Symp. Prov. Int. Comp. Center (1959), pp. 103–116.Google Scholar
  63. [62]
    John, F., Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), pp. 551–585.MathSciNetzbMATHCrossRefGoogle Scholar
  64. [63]
    Jones, B.F., The determination of a coefficient in a parabolic differential equation; I Existence and Uniqueness, J. Math. Mech., 11 (1962), pp. 907–918.MathSciNetzbMATHGoogle Scholar
  65. [64]
    Khosrovshahi, G.B., Growth properties for solutions of Schrödinger type systems, Ph.D. dissertation, Cornell (1972).Google Scholar
  66. [65]
    Khosrovshahi, G.B., Paper in this volume.Google Scholar
  67. [66]
    Knops, R.J., Paper in this volume.Google Scholar
  68. [67]
    Knops, R.J., and Payne, L.E., Uniqueness in classical elastodynamics, Arch. Rat. Mech. Anal., 27 (1968), pp. 349–355.MathSciNetzbMATHCrossRefGoogle Scholar
  69. [68]
    Knops, R.J., and Payne, L.E., Stability in linear elasticity, Int. J. Solids Structures, 4 (1968), pp. 1233–1242.zbMATHCrossRefGoogle Scholar
  70. [69]
    Knops, R.J., and Payne, L.E., On the stability of solutions of the Navier-Stokes equations backward in time, Arch. Rat. Mech. Anal., 29 (1968), pp. 331–335.MathSciNetzbMATHCrossRefGoogle Scholar
  71. [70]
    Knops, R.J., and Payne, L.E., Continuous data dependence for the equations of classical elastodynamics, Proc. Camb. Phil. Soc., 66 (1969), pp. 481–491.MathSciNetzbMATHCrossRefGoogle Scholar
  72. [71]
    Knops, R.J., and Payne, L.E., On uniqueness and continuous data dependence in dynamical problems of linear thermoelasticity, Int. J. Structures Solid, 6 (1970), pp. 1173–1184.zbMATHCrossRefGoogle Scholar
  73. [72]
    Knops, R.J., and Payne, L.E., Growth estimates for solutions of evolutionary equations in Hilbert space with applications in elastodynamics, Arch. Rat. Mech. Anal., 41 (1971), pp. 363–398.MathSciNetzbMATHCrossRefGoogle Scholar
  74. [73]
    Knops, R.J., and Steel, T.R., Uniqueness in the linear theory of a mixture of two elastic solids, Int. J. Eng. Sci., 7 (1969), pp. 571–577.MathSciNetzbMATHCrossRefGoogle Scholar
  75. [74]
    Krein, S.G., On some classes of correctly posed boundary value problems, Dokl. Akad. Nauk SSSR, 114 (1957), pp. 1162–1165.MathSciNetGoogle Scholar
  76. [75]
    Kumano-go, H., On the uniqueness of the Cauchy problem and the unique continuation theorem for elliptic equations, Osaka Math. J., 14 (1962), pp. 181–212.MathSciNetzbMATHGoogle Scholar
  77. [76]
    Landis, E.M., Certain properties of equations of elliptic type, Dokl. Akad. Nauk SSSR, 107 (1956), pp. 640–643.MathSciNetzbMATHGoogle Scholar
  78. [77]
    Lattes, R., and Lions, J.L., The method of quasireversibility. Applications to partial differential equations, Amer. Elsevier Publ. Co. Inc., New York (1969).zbMATHGoogle Scholar
  79. [78]
    Lavrentiev, M.M., On the Cauchy problem for the Laplace equation, Izvest. Akad. Nauk SSSR, Ser. Math., 120 (1956), pp. 819–842.MathSciNetGoogle Scholar
  80. [79]
    Lavrentiev, M.M., On the problem of Cauchy for linear elliptic equations of second order, Dokl. Akad. Nauk SSSR, 112 (1957), pp. 195–197.MathSciNetGoogle Scholar
  81. [80]
    Lavrentiev, M.M., Some improperly posed problems in mathematical physics, Springer-Verlag, New York (1967).zbMATHCrossRefGoogle Scholar
  82. [81]
    Lavrentiev, M.M., Romanov, V.G., and Vasiliev, V.G., Multidimensional inverse problems for differential equations, Lecture Notes in Mathematics, 167, Springer Verlag (1970).Google Scholar
  83. [82]
    Lax, P.D., A stability theorem for solutions of abstract differential equations, and its application to the study of local behaviour of solutions of elliptic equations, Comm. Pure Appl. Math., 9 (1956), pp. 747–766.MathSciNetzbMATHCrossRefGoogle Scholar
  84. [83]
    Levine, H.A., Logarithmic convexity and the Cauchy problem for some abstract second order differential inequalities, J. Diff. Eqtns., 8 (1970), pp. 34–55.MathSciNetzbMATHCrossRefGoogle Scholar
  85. [84]
    Levine, H.A., On a theorem of Knops and Payne in dynamical linear thermoelasticity, Arch. Rat. Mech. Anal., 38 (1970), pp. 290–307.zbMATHCrossRefGoogle Scholar
  86. [85]
    Levine, H.A., Logarithmic convexity, first order differential inequalities and some applications, Trans. Amer. Math. Soc., 152 (1970), pp. 299–319.MathSciNetzbMATHCrossRefGoogle Scholar
  87. [86]
    Levine, H.A., Logarithmic convexity and the Cauchy problem for P(t)u tt+M(t)ut+N(t)u=0 in Hilbert space, (to appear).Google Scholar
  88. [87]
    Levine, H.A., Paper in this volume.Google Scholar
  89. [88]
    Lewy, H., An example of a smooth linear partial differential equation without solution, Ann. of Math., 66 (1957).Google Scholar
  90. [89]
    Lions, J.L., and Malgrange, B., Sur l'unicité retrograde dans les problèmes mixtes paraboliques, Math. Scand., 8 (1960), pp. 277–286.MathSciNetzbMATHGoogle Scholar
  91. [90]
    Lopatinskii, Y.B., Uniqueness of the solution of Cauchy's problem for a class of elliptic equations, Dopov. Akad. Nauk Ukrain (1958), pp. 689–693.Google Scholar
  92. [91]
    Malgrange, B., Unicité du problème de Cauchy d'après A.P. Calderon, Seminaire Bourbaki (1959), p. 178.Google Scholar
  93. [92]
    Marcŭk, G.I., On the formulation of certain inverse problems, Dokl. Akad. Nauk SSSR, 156 (1964), pp. 503–506.MathSciNetGoogle Scholar
  94. [93]
    Marcŭk, G.I., Certain problems in numerical and applied mathematics, Novosibirsk (1966).Google Scholar
  95. [94]
    Miller, K., Three circle theorems in partial differential equations and applications to improperly posed problems, Arch. Rat. Mech. Anal., 16 (1964), pp. 126–154.MathSciNetzbMATHCrossRefGoogle Scholar
  96. [95]
    Miller, K., An eigenfunction expression method for problems with overspecified data, Ann. Scuola Norm Sup di Pisa, 19 (1965), pp. 397–405.zbMATHGoogle Scholar
  97. [96]
    Miller, K., Stabilized numerical methods for location of poles by analytic continuation, Studies in Numerical Analysis 2: Numerical Solutions of Nonlinear Problems, Symposium SIAM, Philadelphia (1968), pp. 9–20, published SIAM (1970).Google Scholar
  98. [97]
    Miller, K., Stabilized numerical analytic prolongment with poles, SIAM J. Appl. Math., 18 (1970), pp. 346–363.MathSciNetzbMATHCrossRefGoogle Scholar
  99. [98]
    Miller, K., Least square methods for ill-posed problems with a prescribed bound, SIAM J. Math. Anal., 1 (1970), pp. 52–74.MathSciNetzbMATHCrossRefGoogle Scholar
  100. [99]
    Miller, K., Paper in this volume.Google Scholar
  101. [100]
    Miranker, W.L., A well-posed problem for the backward heat equation, Proc. Amer. Math. Soc., 12 (1961), pp. 243–247.MathSciNetzbMATHCrossRefGoogle Scholar
  102. [101]
    Mizel, V., and Seidman, T.I., Observation and prediction for the heat equation, J. Math. Anal. Appl., 28 (1969), pp. 303–312, see also same journal, 38 (1972), pp. 149–166.MathSciNetzbMATHCrossRefGoogle Scholar
  103. [102]
    Mizohata, S., Unicité dans le problème de Cauchy pour quelques equations differentielles elliptiques, Mem. Coll. Sci. Univ. Kyoto, 31 (1958), pp. 121–128.MathSciNetzbMATHGoogle Scholar
  104. [103]
    Mizohata, S., Unicité du prolongment des solutions des equations elliptiques du quatrième ordre, Proc. Jap. Acad., 34 (1958), pp. 687–692.MathSciNetzbMATHCrossRefGoogle Scholar
  105. [104]
    Muller, C., On the behaviour of the solutions of the differential equation Δu=F(x,u) in the neighbourhood of a point, Comm. Pure Appl. Math., 7 (1954), pp. 505–514.MathSciNetCrossRefGoogle Scholar
  106. [105]
    Murray, A., Uniqueness and continuous dependence for the equations of elastodynamics without strain energy function, Arch. Rat. Mech. Anal., 47 (1972), pp. 195–204.MathSciNetzbMATHCrossRefGoogle Scholar
  107. [106]
    Murray, A., and Protter, M., Asymptotic behaviour of solutions of second order systems of partial differential equations, (to appear).Google Scholar
  108. [106a]
    Naghdi, P.M., and Trapp, J.A., A uniqueness theorem in the theory of Cosserat surface, J. Elast., 2 (1972), pp. 9–20.MathSciNetCrossRefGoogle Scholar
  109. [107]
    Nirenberg, L., Uniqueness in Cauchy problems for differential equations with constant leading coefficients, Comm. Pure Appl. Math., 10 (1957), pp. 89–105.MathSciNetzbMATHCrossRefGoogle Scholar
  110. [108]
    Novikov, P.S., On the inverse problem of potential theory, Dokl. Akad. Nauk SSSR, 18 (1938), pp. 165–168.Google Scholar
  111. [109]
    Ogawa, H., Lower bounds for solutions of hyperbolic inequalities, Proc. Amer. Math. Soc., 16 (1965), pp. 853–857.MathSciNetzbMATHCrossRefGoogle Scholar
  112. [110]
    Ogawa, H., Lower bounds for solutions of differential inequalities in Hilbert space, Proc. Amer. Math. Soc., 16 (1965), pp. 853–857.MathSciNetzbMATHCrossRefGoogle Scholar
  113. [111]
    Ogawa, H., Lower bounds for the solutions of parabolic differential inequalities, Can. J. Math., 19 (1967), pp. 667–672.MathSciNetzbMATHCrossRefGoogle Scholar
  114. [112]
    Payne, L.E., Bounds in the Cauchy problem for the Laplace equation, Arch. Rat. Mech. Anal., 5 (1960), pp. 35–45.MathSciNetzbMATHCrossRefGoogle Scholar
  115. [113]
    Payne, L.E., On some non-well-posed problems for partial differential equations, Numer. Sol. of Nonlinear Diff. Eqtns., M.R.C. Conference University of Wisconsin, Wiley Press (1966), pp. 239–263.Google Scholar
  116. [114]
    Payne, L.E., On a priori bounds in the Cauchy problem for elliptic equations, SIAM J. Math. Anal., 1 (1970), pp. 82–89.MathSciNetzbMATHCrossRefGoogle Scholar
  117. [115]
    Payne, L.E., and Sather, D., On some non-well-posed problems for the Chaplygin equation, Math. Anal. Appl., 19 (1967), pp. 67–77.MathSciNetzbMATHCrossRefGoogle Scholar
  118. [116]
    Payne, L.E., and Sather, D., On some non-well-posed Cauchy problems for quasilinear equations of mixed type, Trans. Amer. Math. Soc., 128 (1967), pp. 135–141.MathSciNetzbMATHCrossRefGoogle Scholar
  119. [117]
    Payne, L.E., and Sather, D., On singular perturbations in non-well-posed problems, Ann. Mat. Pura Appl., 75 (1967), pp. 219–230.MathSciNetzbMATHCrossRefGoogle Scholar
  120. [118]
    Payne, L.E., and Sather, D., On an initial-boundary value problem for a class of degenerate elliptic operators, Ann. Mat. Pura Appl., 78 (1968), pp. 323–338.MathSciNetzbMATHCrossRefGoogle Scholar
  121. [119]
    Pederson, R.N., On the unique continuation formula for certain second and fourth order elliptic equations, Comm. Pure Appl. Math., 11 (1958), pp. 67–80.MathSciNetzbMATHCrossRefGoogle Scholar
  122. [120]
    Pederson, R.N., Uniqueness and Cauchy's problem for elliptic equations with double characteristics, Ark. Mat., 6 (1967), pp. 535–549.MathSciNetzbMATHCrossRefGoogle Scholar
  123. [121]
    Petrowsky, I.G., Lectures in partial differential equations, Interscience Publishers, New York (1954).Google Scholar
  124. [122]
    Picone, M., Maggiorazione degli integrali delle equazioni totalmente paraboliche alle derivate parziali del secondo ordine, Ann. Mat. Pura Appl. (1929).Google Scholar
  125. [123]
    Plis, A., Unique continuation theorems for solutions of partial differential equations, Proc. Int. Cong. Math. Stockholm (1962), pp. 397–402, see also Nonuniqueness in Cauchy's problem for differential equations of elliptic type, J. Math. Mech., 9 (1960).Google Scholar
  126. [124]
    Plis, A., A smooth linear elliptic equation without any solution in a sphere, Comm. Pure Appl. Math., 14 (1961), pp. 599–617.MathSciNetzbMATHCrossRefGoogle Scholar
  127. [125]
    Protter, M.H., Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960), pp. 81–91.MathSciNetzbMATHCrossRefGoogle Scholar
  128. [126]
    Protter, M.H., Properties of solutions of parabolic equations and inequalities, Can. J. Math., 13 (1961), pp. 331–345.MathSciNetzbMATHCrossRefGoogle Scholar
  129. [127]
    Protter, M.H., Asymptotic behaviour and uniqueness theorems for hyperbolic operators, Joint Symp. Part. Diff. Eqtns. (Novosibirsk 1963) Acad. Sci. USSR Moscow (1963), pp. 348–353.Google Scholar
  130. [128]
    Pucci, C., Studio col metodo delle differenze di un problema di Cauchy relativo ad equazioni a derivate parziali del secondo ordine di tipo parabolico, Ann. Scuolla Norm Pisa, 7 (1953), pp. 205–215.MathSciNetzbMATHGoogle Scholar
  131. [129]
    Pucci, C., Sui problemi di Cauchy non "ben posti", Rend. Acad. Naz. Lincei, 18 (1955), pp. 473–477.MathSciNetzbMATHGoogle Scholar
  132. [130]
    Pucci, C., Discussione del problema di Cauchy per le equazioni di tipo ellitico, Ann. Mat. Pura Appl., 46 (1958), pp. 131–153.MathSciNetzbMATHCrossRefGoogle Scholar
  133. [131]
    Pucci, C., Some topics in parabolic and elliptic equations, Lecture Series, No. 36, Institute for Fluid Dynamics and Appl. Math., University of Maryland (1958).Google Scholar
  134. [132]
    Pucci, C., Discussione del problema di Cauchy per le equazioni di tipo ellitico, Ann. Math. Pura Appl., 46 (1958), pp. 391–412.zbMATHCrossRefGoogle Scholar
  135. [133]
    Rappaport, I.M., On a two dimensional inverse problem in potential theory, Dokl. Akad. Nauk SSSR, 19 (1938).Google Scholar
  136. [134]
    Sather, D., and Sather, J., The Cauchy problem for an elliptic parabolic operator, Ann. Mat. Pura Appl., 30 (1968), pp. 197–214.MathSciNetzbMATHCrossRefGoogle Scholar
  137. [135]
    Schaefer, P.W., On the Cauchy problem for an elliptic system, Arch. Rat. Mech. Anal., 20 (1965), pp. 391–412.MathSciNetzbMATHCrossRefGoogle Scholar
  138. [136]
    Schaefer, P.W., On the Cauchy problem for the nonlinear biharmonic equation, J. Math. Anal. Appl., 36 (1971), pp. 660–673.MathSciNetzbMATHCrossRefGoogle Scholar
  139. [137]
    Shirota, T., A remark on the unique continuation theorem for certain fourth order elliptic equations, Proc. Jap. Acad., 36 (1960), pp. 571–573.MathSciNetzbMATHCrossRefGoogle Scholar
  140. [138]
    Sretenskii, L.N., On an inverse problem of potential theory, Izv. Akad. Nauk SSSR, Ser. Math., 2 (1938).Google Scholar
  141. [139]
    Tihonov, A.N., On stability of inverse problems, Dokl. Akad. Nauk SSSR, 39 (1944), pp. 195–198.Google Scholar
  142. [140]
    Tihonov, A.N., On the solution of ill-posed problems and the method of regularisation, Dokl. Akad. Nauk SSSR, 151 (1963), pp. 501–504.MathSciNetGoogle Scholar
  143. [141]
    Tihonov, A.N., On the regularisation of ill-posed problems, Dokl. Akad. Nauk SSSR, 153 (1963), pp. 49–52.MathSciNetGoogle Scholar
  144. [142]
    Trytten, G.N., Pointwise bounds for solutions of the Cauchy problem for elliptic equations, Arch. Rat. Mech. Anal., 13 (1963), pp. 222–244.MathSciNetzbMATHCrossRefGoogle Scholar
  145. [143]
    Vekua, I.N., New methods for solving elliptic equations, Gos. Izdat. Tech. Teor. Lit., Moscow (1948).zbMATHGoogle Scholar
  146. [144]
    Zimmerman, J.M., Band limited functions and improper boundary value problems for a class of nonlinear partial differential equations, J. of Math. Mech., 11 (1962), pp. 183–196.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin 1973

Authors and Affiliations

  • L. E. Payne

There are no affiliations available

Personalised recommendations