On spector classes

  • Alexander S. Kechris
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 689)


Order Relation High Type Winning Strategy Spector Class Game Quantifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. N. Moschovakis, Elementary Induction on Abstract Structures, North Holland, 1974.Google Scholar
  2. [2]
    Y. N. Moschovakis, Structural characterizations of classes of relations, J. E. Fenstad and P. G. Hinman (Eds.), Generalized Recursion Theory, North Holland, 1974, 53–79.Google Scholar
  3. [3]
    P. Aczel, Games, Quantifiers and Inductive Definitions, Proc. of the 3rd Scandinavian Logic Symposium, S. Kanger (Ed.), North Holland, Amsterdam, 1975, 1–14.Google Scholar
  4. [4]
    P. Aczel, Stage Comparison theorems and game playing with inductive definitions, preprint, 1972.Google Scholar
  5. [5]
    W. Richter and P. Aczel, Inductive definitions and reflecting properties of admissible ordinals, in Generalized Recursion Theory, J. E. Fenstad and P. G. Hinman (Eds.), North Holland, 1974, 301–381.Google Scholar
  6. [6]
    Y. N. Moschovakis, On nonmonotone inductive definability, Fund. Math. 82 (1974), 39–83.MathSciNetzbMATHGoogle Scholar
  7. [7]
    A. S. Kechris, The theory of countable analytical sets, TAMS, 202 (1975), 259–297.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Aanderaa, Inductive definitions and their closure ordinals, Generalized Recursion Theory (Oslo, 1972), J. E. Fenstad and P. G. Hinman (Eds.), North Holland, 1974.Google Scholar
  9. [9]
    S. C. Kleene, Recursive functionals and quantifiers of finite type I, TAMS 91 (1959), 1–52.MathSciNetzbMATHGoogle Scholar
  10. [10]
    R. O. Gandy, General recursive functionals of finite type and hierarchies of functionals, Ann. Fac. Sci. Univ. Clermont-Ferrand, 35 (1967), 5–24.MathSciNetGoogle Scholar
  11. [11]
    A. S. Kechris and Y. N. Moschovakis, Recursion in higher types, Handbook of Math. Logic, J. Barwise (Ed.), North Holland, 1976, p. 681–737.Google Scholar
  12. [12]
    J. Addison, Some consequences of the axiom of constructibility, Fund. Math. 46 (1959a), 123–135.MathSciNetzbMATHGoogle Scholar
  13. [13]
    J. Barwise, Admissible sets and structures, Springer-Verlag, 1975.Google Scholar
  14. [14]
    Y. N. Moschovakis, Descriptive Set Theory, North Holland, to appear.Google Scholar
  15. [15]
    A. S. Kechris, Lecture notes on Descriptive Set Theory, M.I.T., 1973.Google Scholar
  16. [16]
    D. A. Martin, The axiom of determinateness and reduction principles in the analytical hierarchy, BAMS, 74 (1968), 687–689.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. W. Addison and Y. N. Moschovakis, Some consequences of the axiom of definable determinateness, Proc. Nat. Acad. Sci., USA, 59 (1968), 708–712.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. S. Kechris, Countable ordinals and the analytical hierarchy, II, to appear.Google Scholar
  19. [19]
    J. Burgess and D. Miller, Remarks on invariant descriptive set theory, Fund. Math. 90 (1975), 53–75.MathSciNetzbMATHGoogle Scholar
  20. [20]
    A. S. Kechris and D. A. Martin, On the theory of II31 sets of reals, Bull. Amer. Math. Soc., 84 (1978), 149–151.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. S. Kechris and L. A. Harrington, On characterizing Spector classes, J. Symbolic Logic 40 (1975), 19–24.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    L. A. Harrington, Monotone quantifiers and inductive definability, April 1975.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Alexander S. Kechris
    • 1
  1. 1.Department of MathematicsCalifornia Institute of TechnologyPasadena

Personalised recommendations