On recursion in \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{E}\)and semi-spector classes

  • Phokion G. Kolaitis
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 689)


Order Relation Partial Function Finite Sequence Constant Symbol Inductive Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Aczel [1972], Stage Comparison theorems and game playing with inductive definitions, unpublished notes.Google Scholar
  2. K. J. Barwise, R. O. Gandy and Y. N. Moschovakis [1971], The next admissible set, J. Symb. Logic 36 (1971), 108–120.MathSciNetCrossRefzbMATHGoogle Scholar
  3. R. O. Gandy [1960], Proof of Mostowski's conjecture. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 8 (1960), 571–575.MathSciNetzbMATHGoogle Scholar
  4. T. J. Grilliot [1971], Inductive Definitions and Computability, Trans. Amer. Math. Soc. 158 (1971), 309–317.MathSciNetCrossRefzbMATHGoogle Scholar
  5. L. A. Harrington, L. M. Kirousis, T. S. Schlipf [1977], A generalized Kleene-Moschovakis theorem, to appear in Proc. of Amer. Math. Soc.Google Scholar
  6. A. S. Kechris [1973], The structure of envelopes: a survey of recursion theory in higher types, M.I.T. Logic Seminar notes.Google Scholar
  7. A. S. Kechris and Y. N. Moschovakis [1977], Recursion in Higher Types, J. Barwise (ed.), Handbook of Mathematical Logic, North Holland, 681–737.Google Scholar
  8. S. C. Kleene [1959a], Quantification of number theoretic functions, Compositio Math. 14 (1959), 23–40.MathSciNetzbMATHGoogle Scholar
  9. S. C. Kleene [1959b], Recursive functionals and quantifiers of finite types I, Trans. Amer. Math. Soc. 91 (1959), 1–52.MathSciNetzbMATHGoogle Scholar
  10. Ph. G. Kolaitis [1977], Recursion in a quantifier vs. elementary induction, to appear in J. Symb. Logic.Google Scholar
  11. Ph. G. Kolaitis [1978], Doctoral Dissertation, University of California, Los Angeles.Google Scholar
  12. G. Kreisel [1961], Set theoretic problems suggested by the notion of potential totality, Infinitistic Methods, Pergamon (1961), 103–140.Google Scholar
  13. Y. N. Moschovakis [1969a], Abstract first order computability II, Trans. Amer. Math. Soc. 138 (1969), 464–504.MathSciNetzbMATHGoogle Scholar
  14. Y. N. Moschovakis [1969b], Abstract computability and invariant definability, J. Symb. Logic 34 (1969), 605–633.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Y. N. Moschovakis [1970], The Suslin-Kleene theorem for countable structures, Duke Math. J. 37 (1970), 341–352.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Y. N. Moschovakis [EIAS], Elementary Induction on Abstract Structures, North Holland (1974).Google Scholar
  17. Y. N. Moschovakis [1974a], Structural characterizations of classes of relations, J. E. Fenstad-P. G. Hinman (eds.), Generalized Recursion Theory, North Holland (1974), 53–79.Google Scholar
  18. Y. N. Moschovakis [1974b], On nonmonotone inductive definability, Fundamenta Mathematicae 82 (1974), 39–83.MathSciNetzbMATHGoogle Scholar
  19. Y. N. Moschovakis [1976], On the basic notions in the theory of induction, to appear in Proc. Fifth International Congress of Logic, Methodology and Philosophy of Science.Google Scholar
  20. W. Richter [1971], Recursively Mahlo ordinals and inductive definitions, R. O. Gandy-C. E. M. Yates (eds.), Logic Colloquium 69, North Holland (1971), 273–288.Google Scholar
  21. W. Richter and P. Aczel [1974], Inductive definitions and reflecting properties of admissible ordinals, Generalized Recursion Theory, J. E. Fenstad-P. G. Hinman (eds.), North Holland (1974), 301–381.Google Scholar
  22. C. Spector [1960], Hyperarithmetical quantifiers, Fundamenta Mathematicae 48 (1960), 313–320.MathSciNetzbMATHGoogle Scholar
  23. C. Spector [1961], Inductively defined sets of natural numbers, Infinitistic Methods, Pergamon (1961), 97–102.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Phokion G. Kolaitis
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos Angeles

Personalised recommendations