Advertisement

Conforming and nonconforming finite element methods for solving the plate problem

  • P. G. Ciarlet
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 363)

Abstract

For the clamped plate problem (Ω ⊂ R2):
$$\Delta ^2 u = f in \Omega , u = \frac{{\partial u}}{{\partial n}} = 0 on \partial \Omega {\mathbf{ }},$$
various finite element methods are described and compared as regards their asymptotic order of convergence. A particular emphasis is put upon the connections between the patch test and convergence for nonconforming methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adini, A.; Clough, R.W.: Analysis of plate bending by the finite element method NSF Report G. 7337, 1961.Google Scholar
  2. [2]
    Babuška, I.; Aziz, A.K.: Survey Lectures on the Mathematical Foundations of the Finite Element Method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), pp. 3–359, Academic Press, New York, 1972.CrossRefGoogle Scholar
  3. [3]
    Babuška, I.; Zlámal, M.: Nonconforming elements in the finite element method, Technical Note BN-729, University of Maryland, College Park, 1972.Google Scholar
  4. [4]
    Bazeley, G.P.; Cheung, Y.K; Irons, B.M.; Zienkiewicz, O.C.: Triangular elements in bending-conforming and nonconforming solutions, Proceedings Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965.Google Scholar
  5. [5]
    Bogner, F.K.; Fox, R.L.; Schmit, L.A.: The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas, Proceedings Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965.Google Scholar
  6. [6]
    Bramble, J.H.; Hilbert, S.H.: Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1971), 362–369.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Bramble, J.H.; Zlámal, M.: Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Ciarlet, P.G.: Orders of convergence in finite element methods. To appear in Proc. Conference on the Mathematics of Finite Elements and Applications; Brunel University, April 18–20, 1972, to be published by Academic Press.Google Scholar
  9. [9]
    Ciarlet, P.G.; Raviart, P.-A.: General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rational Mech. Anal. 46 (1972), 177–199.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Clough, R.W.; Tocher, J.L.: Finite element stiffness matrices for analysis of plates in bending, Proceedings Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965.Google Scholar
  11. [11]
    Crouzeix, M.; Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I (to appear).Google Scholar
  12. [12]
    Fraeijs de Veubeke, B.: Bending and stretching of plates, Proceedings Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965.Google Scholar
  13. [13]
    Glowinski, R.: Approximations externes, par éléments finis de Lagrange d'ordre un et deux, du problème de Dirichlet pour l'opérateur biharmonique. Méthode itérative de résolution des problèmes approchés, Conference on Numerical Analysis, Royal Irish Academy, 1972.Google Scholar
  14. [14]
    Irons, B.M.; Razzaque, A.: Experience with the patch test for convergence of finite elements, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), pp. 557–587, Academic Press, New York, 1972.CrossRefGoogle Scholar
  15. [15]
    Johnson, C.: On the convergence of some mixed finite element methods in plate bending problems (private communication).Google Scholar
  16. [16]
    Landau, L.; Lifchitz, E.: Théorie de l'Elasticité, Mir, Moscou, 1967.MATHGoogle Scholar
  17. [17]
    Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems, Aero. Quart. 19 (1968), 149–169.Google Scholar
  18. [18]
    Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967.Google Scholar
  19. [19]
    Pian, T.H.H.: Finite element formulation by variational principles with relaxed continuity requirements, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), pp. 671–687, Academic Press, New York, 1972.CrossRefGoogle Scholar
  20. [20]
    Raviart, P.-A.: Méthode des Eléments Finis (Lecture Notes), Université de Paris VI, Paris, 1972.Google Scholar
  21. [21]
    Sander, C.: Bornes supérieures et inférieures dans l'analyse matricielle des plaques en flexion-torsion, Bull. Soc. Roy. Sci. Liège 33 (1964), 456–494.MathSciNetGoogle Scholar
  22. [22]
    Strang, G.: Approximation in the finite element method, Numer. Math. 19 (1972), 81–98.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Strang, G.: Variational crimes in the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), pp. 689–710, Academic Press, New York, 1972.CrossRefGoogle Scholar
  24. [24]
    Strang, G.; Fix, G.: An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, 1973.MATHGoogle Scholar
  25. [25]
    Zienkiewicz, O.C.: The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.MATHGoogle Scholar
  26. [26]
    Zlámal, M.: On the finite element method, Numer. Math. 12 (1968), 394–409.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • P. G. Ciarlet

There are no affiliations available

Personalised recommendations