Biemann domains: Basic results and open problems

  • Martin Schottenloher
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 364)


Banach Space Analytic Continuation Boundary Sequence Convex Space Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Alexander, Analytic functions on Banach spaces, Thesis, University of California, Berkeley (1968).Google Scholar
  2. 2.
    V. Aurich, The spectrum as the envelope of homolorphy of a domain over an arbitrary product of complex lines, this conference.Google Scholar
  3. 3.
    H. Behnke and P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Erg. d. Math. 51(1970); 1. edition 1932.Google Scholar
  4. 4.
    W. Bogdanowicz, Analytic continuation of holomorphic functions with values in a locally convex space, Proc. Amer. Math. Soc. 22(1969) 660–666.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    H. Buchwalter, Topologies et compactologies, Publ. Dép. Math. Lyon, vol. 6, no 2(1969) 1–74.MathSciNetzbMATHGoogle Scholar
  6. 6.
    H. Cartan, Séminaire E. N. S. 1950/51, New York: Benjamin (reprint 1970).Google Scholar
  7. 7.
    H. Cartan and P. Thullen, Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen, Math. Ann. 106(1932) 617–647.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    G. Coeuré, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, Ann. Inst. Fourier 20(1970) 361–432.CrossRefzbMATHGoogle Scholar
  9. 9.
    G. Coeuré, Forthcoming book on manifolds spread over normed spaces, To appear at North-Holland.Google Scholar
  10. 10.
    S. Dineen, The Cartan-Thullen Theorem for Banach spaces, Ann. d. Sc. Norm. Sup. d. Pisa 24(1970) 883–886.MathSciNetzbMATHGoogle Scholar
  11. 11.
    S. Dineen, Holomorphically complete locally convex topological vector spaces, To appear in Séminaire Lelong.Google Scholar
  12. 12.
    S. Dineen, Holomorphic functions on locally convex topological vector spaces II, Ann. Inst. Fourier (to appear).Google Scholar
  13. 13.
    S. Dineen, Runge domains in Banach spaces, Proc. R. Irish Acad. 71(1971) 85–89.MathSciNetzbMATHGoogle Scholar
  14. 14.
    S. Dineen, Sheaves of holomorphic functions on infinite dimensional vector spaces, Math. Ann. (to appear).Google Scholar
  15. 15.
    S. Dineen, Holomorphic functions and surjective limits, Preprint.Google Scholar
  16. 16.
    L. Gruman, The Levi problem in certain infinite dimensional vector spaces, III. J. of Math. (to appear).Google Scholar
  17. 17.
    L. Gruman and C. Kiselman, Le problème de Levi dans les espaces de Banach à base, C. R. Acad. Sci. 274(1972) 1296–1299.MathSciNetzbMATHGoogle Scholar
  18. 18.
    R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Englewood Cliffs, N.J.: Prentice-Hall 1965.zbMATHGoogle Scholar
  19. 19.
    Y. Hervier, Sur le problème de Levi pour les espaces étalés banachiques, C. R. Acad. Sci. 275(1972) 821–824.MathSciNetzbMATHGoogle Scholar
  20. 20.
    A. Hirschowitz, Bornologie des espaces de fonctions analytiques en dimension infinie, Séminaire Lelong 1970, Lecture Notes in Math. 250(1971) 21–33.MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Hirschowitz, Diverses notions d'ouverts d'analyticité en dimension infinie, Séminaire Lelong 1970, Springer Lecture Notes in Math. 205(1971) 11–20.MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Hirschowitz, Prolongement analytique en dimension infinie, Ann. Inst. Fourier 22(1972) 255–292.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Igusa, On a property of the domain of regularity, Mem. Coll. Sci. Univ. Kyoto, Ser. A, 27(1952) 95–97.MathSciNetzbMATHGoogle Scholar
  24. 24.
    B. Josefson, A Counterexample in the Levi problem, This conference.Google Scholar
  25. 25.
    E. Ligocka, A local factorization of analytic functions and its applications, Stud. Math. (to appear).Google Scholar
  26. 26.
    E. Ligocka and J. Siciak, Weak analytic continuation, Bull. de l'Acad. Pol. de Sci. 20(1972).Google Scholar
  27. 27.
    M. C. Matos, On the Cartan-Thullen theorem for some subalgebras of holomorphic functions in a locally convex space, J. für die Reine und Angew. Math. (to appear).Google Scholar
  28. 28.
    B. Malgrange, Lectures on the theory of functions of several complex variables, Bombay: Tata Inst. of Fund. Research (1958).zbMATHGoogle Scholar
  29. 29.
    L. Nachbin, Concerning spaces of holomorphic mappings, Rutgers University, USA (1970).zbMATHGoogle Scholar
  30. 30.
    L. Nachbin, On vector-valued versus scalar-valued analytic continuation, Indag. Math. (to appear).Google Scholar
  31. 31.
    L. Nachbin, Holomorphy between locally convex spaces, This conference.Google Scholar
  32. 32.
    Ph. Noverraz, Sur le théorème de Cartan-Thullen-Oka en dimension infinie, An. Acad. brasil. Ciênc. (to appear).Google Scholar
  33. 33.
    Ph. Noverraz, Sur la pseudo-convexité et la convexité polynomiale en dimension infinie, Ann. Inst. Fourier (to appear).Google Scholar
  34. 34.
    Ph. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, Amsterdam: North-Holland 1973.zbMATHGoogle Scholar
  35. 35.
    D. Pisanelli, Applications analytique en dimension infinie, Bull. Sc. Math., 2e série, 96(1972) 181–191.MathSciNetGoogle Scholar
  36. 36.
    C. E. Rickart, Holomorphic extensions and domains of holomorphy for general function algebras, This conference.Google Scholar
  37. 37.
    M. Schottenloher, Über analytische Fortsetzung in Banachräumen, Math. Ann. 199(1972) 313–336.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    M. Schottenloher, ε-product and continuation of analytic mappings, Colloque d'Analyse, Rio de Janeiro 1972, Hermann (to appear).Google Scholar
  39. 39.
    M. Schottenloher, Analytic continuation and regular classes in locally convex Hausdorff spaces, Port. Math. (to appear).Google Scholar
  40. 40.
    K. Stein, Einführung in die Funktionentheorie mehrerer Veränderlichen, Lecture notes, Univ. München (1962).Google Scholar

Copyright information

© Springer-Verlag Berlin 1974

Authors and Affiliations

  • Martin Schottenloher
    • 1
  1. 1.Mathematisches Institut der Universität MünchenMünchen 2Germany

Personalised recommendations