Advertisement

On some various notions of infinite dimensional holomorphy

  • J. F. Colombeau
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 364)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    V. I. Averbuck and O. G. Smolyanov, The various definitions of the derivative in linear topological spaces, Russian Math. Surveys Vol. 23, No.4(1968), 67–113.CrossRefzbMATHGoogle Scholar
  2. 2.
    J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. T. 39(1971), 77–112.MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. F. Colombeau, Sur les applications G-analytiques et analytiques en dimension infinie, Seminaire P. Lelong-Année 1971–72-Lecture Notes in Math-Springer.Google Scholar
  4. 4.
    J. F. Colombeau, Différentiation et Bornologie, These-Bordeaux 1973.Google Scholar
  5. 5.
    H. Hogbé Nlend, Théorie des Bornologies et Applications, Lecture Notes in Math No.213, Springer.Google Scholar
  6. 6.
    H. Hogbé Nlend, Les espaces de Fréchet Schwartz et la propriété d'approximation, Comptes Rendus Acad. Sci. Paris A275, 1972, 1073–1075.zbMATHGoogle Scholar
  7. 7.
    H. Hogbé Nlend, Applications analytiques entre espaces vectoriels et algebres bornologiques, Colloque sur les fonctions de plusieurs variables complexes, Paris, Juin 1972.Google Scholar
  8. 8.
    D. Lazet, Applications analytiques dans les espaces bornologiques, Séminaire Lelong-1971–72, Lecture Notes in Math-Springer.Google Scholar
  9. 9.
    M. Z. Nashed, Differentiability and related properties... Non linear functional Analysis and applications, Academic Press, New York-London, 1971.zbMATHGoogle Scholar
  10. 10.
    D. Pisanelli, Applications analytiques en dimension infinie, Bull. Sci. Math. 2nd series, 96(1972), 181–191.MathSciNetzbMATHGoogle Scholar
  11. 11.
    J. S. e Silva, Le calcul différentiel et intégral dans les espaces localement convexes réels ou complexes, Atti. Acad. Naz. Lincei Vol.20(1956), 743–750 et Vol.21(1956), 40–46.zbMATHGoogle Scholar
  12. 12.
    J. S. e Silva, Conceitos de funçao differemciavel em espaços localmente convexos, Publ. Math. Lisboa, 1957.Google Scholar

Copyright information

© Springer-Verlag Berlin 1974

Authors and Affiliations

  • J. F. Colombeau
    • 1
  1. 1.U E R de Mathématiques et d'InformatiqueUniversité de Bordeaux IBordeaux - TalenceFrance

Personalised recommendations